WALKING POSTER PRESENTATION **Open Access** # Asymmetric myocardial thickening in aortic stenosis Calvin W Chin*, Emily N Yeung, Anoop S Shah, Scott Semple, Maria Koo, Nicholas Mills, David Newby, Marc R Dweck From 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015 #### **Background** Asymmetric wall thickening has been observed in aortic stenosis (AS) but the clinical importance is poorly understood. We hypothesized this pattern was associated with advanced remodeling and worse outcomes. #### **Methods** Left ventricular volumes, wall thickness and mass were assessed in 166 patients (70 [64, 76] years; 69% males) with cardiovascular magnetic resonance. Diffuse myocardial fibrosis was assessed using myocardial T1 | | Concentric wall thickening (n=69) | Asymmetric wall thickening (n=43) | P value | |---|-----------------------------------|-----------------------------------|---------| | BASELINE CHARACTERISTICS | | | | | Age, years | 70 [64, 77] | 72 [67, 75] | 0.41 | | Males, n (%) | 54 (78) | 31 (72) | 0.60 | | Coronary artery disease, n (%) | 22 (32) | 20 (47) | 0.18 | | Hypertension, n (%) | 48 (70) | 33 (77) | 0.54 | | Systolic blood pressure, mmHg | 150±20 | 153±22 | 0.46 | | ECHOCARDIOGRAPHY | | | | | Peak aortic jet velocity, m/s | 3.9 [3.4, 4.5] | 4.2 [3.9, 4.9] | <0.01 | | Mean pressure gradient, mmHg | 35 [24, 44] | 41 [35, 50] | <0.01 | | Aortic valve area, cm ² | 0.82 [0.70, 1.08] | 0.80 [0.66, 0.98] | 0.18 | | CARDIOVASCULAR MAGNETIC RESONANCE | | | | | Indexed end diastolic volume (EDV), mL/m ² | 67 [60, 74] | 68 [62, 78] | 0.19 | | Indexed end systolic volume, mL/m ² | 22 [16, 26] | 22 [18, 26] | 0.50 | | Indexed stroke volume, mL/m² | 44 [40, 52] | 47 [41. 55] | 0.26 | | Ejection fraction, % | 68 [64, 72] | 67 [64, 73] | 0.93 | | Indexed left ventricular mass (LVMi), mg/m² | 92 [82, 103] | 96 [80, 106] | 0.50 | | LVMi/EDVi (mg/mL) | 1.33 [1.23, 1.56] | 1.36 [1.21, 1.50] | 0.50 | Figure 1 Baseline characteristics of patients with concentric and asymmetric wall thickening. **Figure 2** Compared to patients with concentric wall thickening, patients with asymmetric wall thickening had smilar left ventricular mass index (A) but elevated high-sensitivity troponin I (B) and brain natriuretic peptide concentrations (C). Importantly, patients with asymmetric wall thickening had worst outcomes compared to those with normal and concentric wall thickening (D). mapping (partition coefficient, λ). In the absence of infarction, asymmetric wall thickening was defined as myocardial thickness ≥ 13 mm and opposing wall thickness ratio ≥ 1.5 . High-sensitivity cardiac troponin I (cTnI) and brain natriuretic peptide (BNP) concentrations were used as markers of myocardial injury and decompensation, respectively. Aortic valve replacement and all-cause mortality were assessed at 1 year. #### **Results** Compared to patients with concentric wall thickening (n=69), those with asymmetric pattern (n=43) had increased diffuse myocardial fibrosis (λ values 0.48±0.04 versus 0.46±0.04, respectively; P=0.04) despite similar age, sex, systolic blood pressure (SBP), and left ventricular mass index (LVMi; Table 1 and Panel A; all P>0.10). Plasma cTnI and BNP concentrations were also increased independent of age, sex, SBP, AS severity and LVMi (both P<0.01; Panels B and C). Patients with Chin et al. Journal of Cardiovascular Magnetic Resonance 2015, **17**(Suppl 1):Q49 http://www.jcmr-online.com/content/17/S1/Q49 asymmetric pattern had worst outcomes compared to those with concentric thickening and normal wall thickness (log-rank P<0.0001; Panel D). #### **Conclusions** In aortic stenosis, asymmetric wall thickening is associated with ventricular decompensation and a worse prognosis. #### **Funding** The study is supported by the British Heart Foundation. Published: 3 February 2015 doi:10.1186/1532-429X-17-S1-Q49 Cite this article as: Chin et al.: Asymmetric myocardial thickening in aortic stenosis. Journal of Cardiovascular Magnetic Resonance 2015 17 (Suppl 1):Q49. ## Submit your next manuscript to BioMed Central and take full advantage of: - Convenient online submission - Thorough peer review - No space constraints or color figure charges - Immediate publication on acceptance - Inclusion in PubMed, CAS, Scopus and Google Scholar - Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit