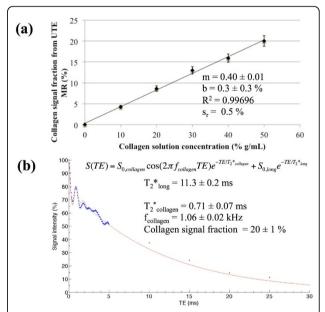
WALKING POSTER PRESENTATION

Open Access

Characterization of the ultra-short echo time magnetic resonance (UTE MR) collagen signal associated with myocardial fibrosis

Adrienne G Siu^{1,2*}, Andrew Ramadeen³, Xudong Hu³, Lily Morikawa⁴, Li Zhang^{1,2}, Justin Lau^{1,2}, Garry Liu^{1,2}, Mihaela Pop^{1,2}, Kim A Connelly^{5,3}, Paul Dorian^{5,3}, Graham A Wright^{1,2}

From 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015


Background

The homogeneous distribution of collagen in diffuse myocardial fibrosis renders the disease unsuitable for imaging using late gadolinium enhancement (LGE) [1]. More recently, the estimation of extracellular volume from T₁ maps involving gadolinium agents has shown promise; however, these methods are not specific to collagen and are governed by gadolinium kinetics [2]. The diagnosis of diffuse myocardial fibrosis would benefit from an imaging method that can directly detect collagen. Notably, ultra-short echo time magnetic resonance (UTE MR) is a technique that can be used to detect short T₂* species, including collagen [3]. Our objective is to characterize the UTE signal of protons in the collagen molecule, including their T2* and chemical shift. Direct isolation of a collagen signal could aid in the diagnosis of myocardial fibrosis, especially for diffuse distributions, and the assessment of disease extent.

Methods

Collagen solutions of concentrations ranging from 0 % m/v to 50 % m/v were prepared by dissolving hydrolyzed type I and III collagen powder in 0.125 mM MnCl $_2$, where the signal decay of MnCl $_2$ mimicked that of cardiac muscle. Each solution was scanned using a 3D UTE pulse sequence at 7 T, acquiring TEs from 0.02 ms to 25 ms, at a resolution of 0.781 mm isotropic. Upon fitting with a model of bi-exponential T_2^{\ast} with oscillation, the UTE collagen signal fraction was determined and calibrated against the collagen concentration. The T_2^{\ast} and resonance frequency (arising from the chemical shift) of collagen were assessed in

collagen solutions. Validation of the collagen signal properties was also performed in formalin-fixed canine heart tissue, imaged with TEs from 0.02 ms to 25 ms, at a resolution of 0.156 mm isotropic.

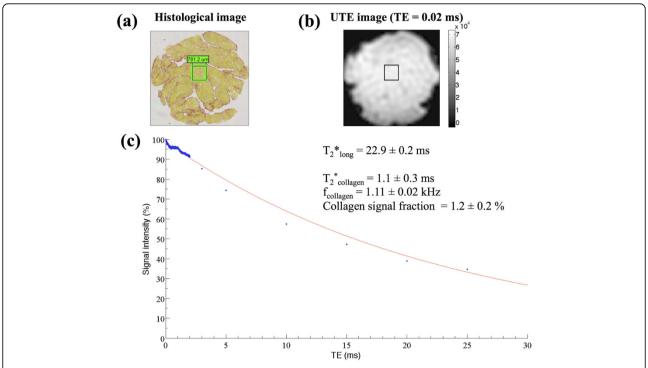


Figure 1 UTE results in collagen solutions. (a) Collagen solution calibration plot, demonstrating a linear relationship between the UTE collagen signal fraction and the collagen concentration. m = slope, b = y-intercept, $R^2 = \text{correlation coefficient}$, $s_r = \text{standard deviation}$ about the regression. (b) T_2 * decay of the 50 % collagen solution, fitted using a bi-exponential T_2 * model with oscillation. T_2 *long denotes the long T_2 * of MnCl₂ (mimicking cardiac muscle). Although not all long TEs were fitted, the focus was in the characterization of the short TEs ≤ 2 ms, where the T_2 * model is accurate.

Full list of author information is available at the end of the article

¹Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

Figure 2 Histology and UTE results in canine heart tissue. (a) Histological slice of heart tissue, stained with Picrosirius Red. The 781.2 μm x 781.2 μm region-of-interest (ROI) used for analysis is delineated. The collagen area fraction in the ROI was determined to be 4 ± 2 %, based on a pixel threshold algorithm. (b) Corresponding UTE MR image at TE = 0.02 ms, with the ROI delineated. (c) T₂* decay within the ROI. T₂*long denotes the long T₂* of cardiac muscle. TEs ≤ 2 ms were finely sampled to determine the collagen T₂* and resonance frequency, where the T₂* model is accurate. Based on the calibration plot in Figure 1a, the collagen signal fraction of 1.2 ± 0.2 % was equivalent to a collagen concentration of 2.3 ± 0.9 %. Hence, there was agreement between the collagen area fraction determined from histology (4 ± 2 %) and the collagen concentration.

Results

For collagen concentrations of 10 % to 50 %, the mean collagen T_2^* was 0.75 ± 0.05 ms, and the mean collagen frequency was 1.061 ± 0.004 kHz. A linear relationship (slope = 0.40 ± 0.01 , $R^2 = 0.99696$) was determined between the UTE collagen signal fraction associated with these characteristics and the measured collagen concentration (Figure 1). Similarly in canine heart tissue, a signal with T_2^* of 1.1 ± 0.3 ms and resonance frequency of 1.11 ± 0.02 kHz upfield of water was determined, consistent with collagen (Figure 2). The UTE collagen signal fraction of 1.2 ± 0.2 % in tissue corresponded to a collagen concentration of 2.3 ± 0.9 %, which was within the uncertainty of the collagen area fraction determined from histology (4 ± 2 %).

Conclusions

The results suggest that collagen associated with myocardial fibrosis can be endogenously detected and quantified using UTE MRI. This signal is specific to protons in collagen, characterized by a $T_2{}^{\ast}$ of ~ 0.8 ms and a resonance frequency of ~ 1.1 kHz upfield of water at 7 T. Such properties would be beneficial in the determination of collagen content due to disease.

Funding

Canadian Institutes of Health Research (CIHR).

Authors' details

¹Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. ²Imaging Research, Sunnybrook Research Institute, Toronto, ON, Canada. ³Keenan Research Centre, Li Ka Shing Knowledge Institute, Toronto, ON, Canada. ⁴Centre for Modeling Human Disease, Toronto Centre for Phenogenomics, Toronto, ON, Canada. ⁵Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada.

Published: 3 February 2015

References

- . Sado, et al: Future Cardiol 2011.
- 2. Mewton, et al: J Am Coll Cardiol 2011.
- 3. De Jong, et al: J Moll Cell Cardiol 2011.

doi:10.1186/1532-429X-17-S1-Q7

Cite this article as: Siu *et al*: Characterization of the ultra-short echo time magnetic resonance (UTE MR) collagen signal associated with myocardial fibrosis. *Journal of Cardiovascular Magnetic Resonance* 2015 17(Suppl 1):Q7.