

WORKSHOP PRESENTATION

Open Access

Non-contrast T₁ and T₂ relaxometry characterizes reperfusion injury of acute MI in swine

Haiyan Ding^{1,2*}, Michael Schär³, Karl H Schuleri^{4,5}, Henry R Halperin⁴, M Muz Zviman⁴, Roy Beinart^{4,6}, Daniel A Herzka²

From 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015

Background

Reperfusion injury in acute myocardial infarction (MI) results in edema, necrosis, microvascular obstruction (MVO), and intramyocardial hemorrhage (IMH), the latter presents an interesting clinical target. [1] Cardiovascular MRI has been shown capable of characterizing all of these tissue components. Other than MVO, which is currently detected by flow-deficient regions in contrast enhanced imaging, all other tissue components can be identified by T₁ and T₂ (T₂*). Theoretically, the byproducts of blood breakdown observed with IMH lead to decreased T₁ and T₂ (T₂*). [2] Conversely, free water accumulation (edema) and necrosis lead to increased T₁ and T₂. [2] Hence, direct and quantitative measurement of relaxation rates is promising in myocardial tissue characterization, avoiding ambiguity typical of weighted images (i.e. T2-weighted spin-echo), undesired signal loss from T2* (weighted) images or the uncertainty introduced by contrast agent kinetics. Hypothesis: Combined T₁ and T₂ mapping can characterize reperfused MI without contrast agents.

Methods

MI was induced in swine by 1 (N=3) or 2 (N=3) hr balloon occlusion of the LAD after the first diagonal, with MRI 7-9 days post MI (Achieva TX, Philips). Relaxometry: 3D respiratory navigator-gated T₂-mapping [3]; 2D Breath-hold T₁-mapping (MOLLI) [4]. Clinical standard: breath-hold black-blood T₂W TSE (BB-T₂-STIR) [5]; early (3 min post) gadolinium-enhanced images (EGE) using PSIR and 0.2 mmol/kg Magnevist. [6]. IMH was

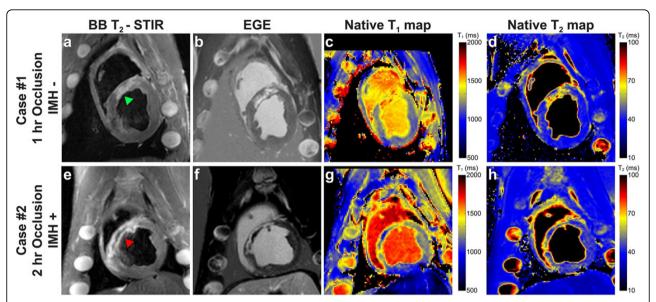
identified in T_2W images/ T_1/T_2 maps as areas of hypointensity surrounded by hyperintense signal/ T_1/T_2 representing edema. MVO was defined in EGE images as hypointense areas surrounded by enhanced MI. The co-localization of tissue types among techniques was examined.

Results

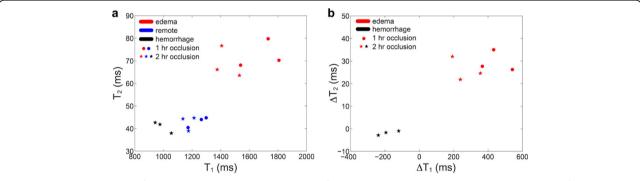
IMH was detected in all animals with 2 hr occlusions, identified by decreased T_1 and T_2 , and was spatially consistent with the hypoenhanced core in BB-T₂-STIR and with MVO in EGE. Edema was observed in all animals (elevated T_1 and T_2). (Fig. 1)

Planimetry showed that relative to remote myocardium, T_1 and T_2 of edema were significantly higher (p < 0.001 and p <1e-5, respectively), while within IMH T_1 was lower (p = 0.001) and T_2 the same (p = 0.28). (Fig. 2)

Conclusions


Though either T_1 or T_2 can be used to separate tissues, combined T_1 and T_2 mapping may allow for more accurate detection of IMH in reperfusion injury, without variability from contrast kinetics, or BB- T_2 -STIR artifacts. [7] Based on a small number of animals, T_2 was superior in edema detection, while T_1 performed better in IMH detection. Combined relaxometry may identify tissues with better specificity than individual and may help clarify the link between MVO and IMH. High-resolution relaxometry may be necessary to avoid partial volume.

Funding


Funded in part by the American Heart Association - 11SDG5280025.

¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China Full list of author information is available at the end of the article

Figure 1 Matched representative SAX images from swine without hemorrhage after 1 hr LAD occlusion (Case #1) (a-d) and with hemorrhage after a 2 hr occlusion (Case #2) (e-h). In Case #1, significant T_1 and T_2 elevation are present in both maps (c,d), though no MVO was observed with EGE (b) nor was a hypointense core present in T_2 W images (a). In comparison, Case #2 shows clear IMH, demarked by decrease in T_1 and T_2 , surrounded by edema, shown by increased T_1 and T_2 (g and h), all of which are excellently co-localized with that in T_2 W (e) and EGE (f). Green arrowhead indicates edema; red arrowhead indicates the core of IMH. Note that T_1 mapping is influenced by off-resonance and lower image resolution. As the result of competing effects on T_1 and T_2 from IMH and edema, partial volume averaging makes the T_2 in IMH close to that of normal myocardium.

Figure 2 a. ROI-based $T_1 \& T_2$ for edema, IMH and remote myocardium from matched T_1 and T_2 maps. b. Changes in $T_1 \& T_2$ after subtraction of the reference values of remote myocardium. Edema had higher T_2 than both remote myocardium or IMH. T_1 can be used to discriminate between edema, IMH and normal myocardium, though the distributions may overlap. Edema and IMH can be classified with higher specificity using both T_1 and T_2 .

Authors' details

¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China. ²Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA. ³Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, USA. ⁴Department of Medicine, Cardiology, Johns Hopkins School of Medicine, Baltimore, MD, USA. ⁵Department of Radiology, Mercy Fitzgerald Hospital, Darby, PA, USA. ⁶Heart Institute, Sheba Medical Center, Tel Aviv University, Ramat Gan, Israel.

Published: 3 February 2015

References

Yellon: NEJM 2007.

- . Salerno: JACC CVI 2013.
- 3. Ding: MRM 2014.
- 4. Messroghli: MRM 2004.
- 5. Simonetti: Radiol 1996.
- 6. Kellman: MRM 2002.
- 7. Kellman: MRM 2007.

doi:10.1186/1532-429X-17-S1-W14

Cite this article as: Ding *et al.*: Non-contrast T₁ and T₂ relaxometry characterizes reperfusion injury of acute MI in swine. *Journal of Cardiovascular Magnetic Resonance* 2015 **17**(Suppl 1):W14.