WORKSHOP PRESENTATION Open Access # Motion correction for free breathing quantitative myocardial t₂ mapping: impact on reproducibility and spatial variability Sébastien Roujol^{1*}, Tamer A Basha¹, Sebastian Weingartner^{1,2}, Mehmet Akcakaya¹, Sophie Berg¹, Warren J Manning^{1,3}, Reza Nezafat¹ From 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015 ## **Background** Quantitative myocardial T_2 mapping is a promising technique for *in-vivo* assessment of inflammation and edema [1]. Free breathing T_2 mapping sequences increase the flexibility in the choice of the number of T_2 prep echoes times (TE_{T2P}), but should be combined with respiratory motion correction technique [2]. In this study, we sought to evaluate the performance of the Adaptive Registration of varying Contrast-weighted images for improved TIssue Characterization (ARCTIC) algorithm [3] for in-plane motion correction in T_2 mapping data and its impact on in-vivo reproducibility and spatial variability of myocardial T_2 estimates. #### Methods Seven healthy adult subjects (30±17y, 3male) were imaged using a 1.5 T Phillips scanner. T2 mapping was performed using either 1) a "T_{2P}4TE" sequence (4 T_2 prep echo times=[0, 25, 50, ∞]), or 2) a " T_{2P} 20TE" sequence (20 T₂prep echo times=[0, 25, 30, 35, ..., 95, 100, ∞ , ∞ , ∞]) [4]. TE_{T2P}= ∞ was simulated by acquiring an image immediately after a saturation pulse [4]. Each subject was imaged using eight T2 mapping scans in the following order: 1) breath-held T_{2P}4TE (BH), 2) free breathing T_{2P}4TE without respiratory navigator (FB), 3) free breathing T_{2P}4TE with respiratory navigator (FB+NAV), and 4) free breathing T_{2P}20TE with respiratory navigator (5 repetitions). The same 2D short axis slice was acquired with all scans using single-shot ECGtriggered acquisitions with balanced SSFP imaging readout $(TR/TE/\alpha = 2.7 \text{ms}/1.35 \text{ms}/85^\circ)$, $FOV = 240 \times 240 \text{mm}^2$, resolution= $2.5\times2.5\times8$ mm³, 10 linear ramp-up pulses, SENSE rate=2, 51 phase encoding lines, linear ordering). Accuracy of in-plane motion correction was evaluated in the first three scans by measurements of the DICE similarity coefficients (DSC) (1: ideal registration, 0: none) and the myocardial boundary error (MBE) with and without using ARCTIC. T_2 mapping reproducibility and spatial variability with and without using ARCTIC was evaluated over the entire myocardium using the 5 repetitions of the T_{2P} 20TE sequence and 1) a subset of 4 T_2 prep echo times=[0ms, 25ms, 50ms, ∞] (referred to as 4TE) and 2) all 20 T_2 prep echo times (referred to as 20TE). ### Results ARCTIC increased DSC in BH data $(0.90\pm0.02 \text{ vs.} 0.87\pm0.05, p=0.09)$, FB data $(0.91\pm0.02 \text{ vs.} 0.79\pm0.15, p=0.009)$, and FB+NAV data $(0.90\pm0.02 \text{ vs.} 0.86\pm0.08, p=0.039)$, and reduced MBE in BH data $(0.63\pm0.09 \text{ vs.} 0.74\pm0.12, p=0.049)$, FB data $(0.60\pm0.12 \text{ vs.} 1.16\pm0.71, p=0.007)$, and FB+NAV data $(0.61\pm0.13 \text{ vs.} 0.83\pm0.28, p=0.025)$. ARCTIC improved the reproducibility (4TE: 5.0 ± 2.3 ms vs. 5.9 ± 3.1 ms, p=0.011; 20TE: 2.4 ± 1.0 ms vs. 4.3 ± 3.9 ms, p=0.002) and reduced spatial variability (4TE: 11.1 ± 3.6 ms vs. 13.7 ± 4.3 ms, p<0.001; 20TE: 7.9 ± 1.8 ms vs. 10.6 ± 5.3 ms, p=0.001) of in-vivo T_2 mapping. #### **Conclusions** The ARCTIC technique substantially reduces spatial mis-alignment among T_2 -weighted images and improves both the reproducibility and the spatial variability of invivo T_2 mapping. Full list of author information is available at the end of the article ¹Department of Medicine (Cardiovascular Division), BIDMC / Harvard Medical School, Boston, MA, USA **Figure 1** T_2 scans from one subject acquired using the T_{2P} 4TE sequence under breath-hold (BH), free breathing (FB), and free breathing with respiratory navigator gating (FB+NAV). Data are shown without (uncorrected) and with (motion corrected) in-plane motion correction. The endocardial contour of the left ventricular (LV) myocardium, drawn on the reference image (1st image) of each scan, is reported in all subsequent T_2 -weighted images to facilitate visual motion assessment. Misalignments observed among uncorrected images (white arrows) were substantially reduced after in-plane motion correction using ARCTIC. Furthermore, artifacts in uncorrected T_2 maps (white arrows) were reduced in motion corrected T_2 maps. **Figure 2** Example of multiple T_2 maps acquired on the same subject using the five repetitions of the T_{2P} 20TE sequence acquired under free breathing conditions with respiratory navigator gating. T_2 maps were reconstructed with all T_2 prep echo times (20 TEs) or only a subset of the T_2 prep echo times (0ms, 25ms, 50ms, ∞) (4 TEs). While the remaining in-plane motion generates artifacts on the directly reconstructed T_2 maps (uncorrected), substantial improvement of T_2 map quality was obtained using in-plane motion correction (motion corrected). As expected, the homogeneity of the T_2 maps greatly improved when using all 20 T_2 prep echo times compared to only 4 T_2 prep echo times. #### Authors' details ¹Department of Medicine (Cardiovascular Division), BIDMC / Harvard Medical School, Boston, MA, USA. ²Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany. ³Radiology, BIDMC / Harvard Medical School, Boston, MA, USA. #### Published: 3 February 2015 #### References - 1. McNamara: Circulation 1985. - 2. Giri: MRM 2012. - 3. Roujol: MRM 2014. - 4. Akçakaya: MRM 2014. #### doi:10.1186/1532-429X-17-S1-W5 Cite this article as: Roujol $\it{et~al}$: Motion correction for free breathing quantitative myocardial t_2 mapping: impact on reproducibility and spatial variability. Journal of Cardiovascular Magnetic Resonance 2015 17(Suppl 1):W5. # Submit your next manuscript to BioMed Central and take full advantage of: - Convenient online submission - Thorough peer review - No space constraints or color figure charges - Immediate publication on acceptance - Inclusion in PubMed, CAS, Scopus and Google Scholar - Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit