

Open Access

ORAL PRESENTATION

Atrio-ventricular mechanics and heart failure in Ebstein's anomaly - a cardiac magnetic resonance study

Michael Steinmetz¹, Marike Broder^{1*}, Johannes T Kowallick³, Pablo Lamata⁴, Shelby Kutty⁵, Matthias Seehase¹, Christina Unterberg-Buchwald², Wieland Staab³, Jan M Sohns³, Gerd Hasenfuss², Thomas Paul¹, Joachim Lotz³, Andreas Schuster²

From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016

Background

Ebstein's anomaly (EA) is a rare but clinically important congenital heart disease with potential affection of right ventricular(RV), right atrial (RA), left ventricular (LV) and left atrial (LA) function that may play a role in heart failure development. Thus, we sought to assess quantitative atrial and ventricular function in EA with CMR feature tracking, and to correlate changes in biatrial and biventricular performance with the severity of disease and clinical parameters of heart failure.

Methods

Atrial and ventricular deformation parameters were calculated from myocardial feature tracking (2D CPA MR, TomTec Unterschleissheim, Germany) from 30 EA and 20 healthy control subjects at 1.5 Tesla. RA and LA performance was characterized using longitudinal strain and strain rate parameters quantifying reservoir function (total strain [Ells], peak positive SR [SRs]), conduit function (passive strain [Elle], peak early negative SR [SRe]) and booster pump function (active strain [Ella], late peak negative SR [SRa]). Ventricular performance was characterized using RV and LV global longitudinal strain (Ell) and LV circumferential and radial short axis strain (Ecc and Err). Additionally, volumetric measurements (QMass, Medis, Leiden, The Netherlands) for all cardiac chambers including the Total right/left volume-index and heart failure markers (BNP, NYHA class) were quantified.

¹Pediatric Cardiology and Intensive Care, Georg-August-University Goettingen Medical Center, Goettingen, Germany

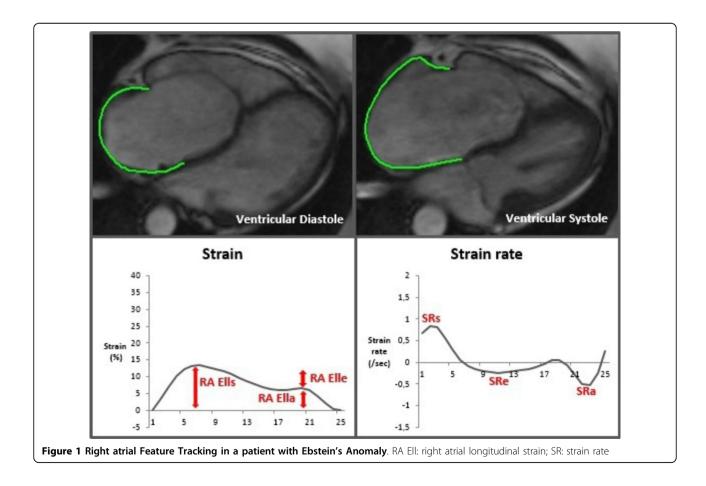
Results

RA reservoir and booster pump function were significantly impaired in the EA group as compared to controls using strain and volume metrics (see table 1) while conduit function was not different based on volumes. Changes in RA performance correlated significantly with markers of heart failure (NYHA, BNP and Total R/L-Volume Index). LA function in EA patients was also significantly impaired with atrial contractile function correlating with NYHA class. Furthermore, EA patients exhibited an impaired RV function (see table 1) also with a significant correlation with heart failure markers (RV Ell with NYHA class: r = 0.466, p = 0.012), whereas LV parameters only showed a non-significant trend towards reduced performance.

Conclusions

Right atrial function is impaired in EA and can be quantified using CMR-FT. In combination with reduced quantitative RV longitudinal strain in the presence of preserved RV-EF, these quantitative changes may potentially represent early stages in heart failure development in EA. This is underpinned by a close correlation of decreased RA and RV deformational function with heart failure parameters such as NYHA, BNP and Total R/L-Volume Index. LA function is also impaired in EA, while LV function is still normal.

We suggest that in EA patients, CMR derived RA function and RV longitudinal strain may be used as more sensitive markers to detect early deterioration of right heart function. Moreover, LA deformation should be monitored for early detection of left heart dysfunction. Incorporating these measures into CMR assessment may help to improve clinical management of EA patients.


© 2016 Steinmetz et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Full list of author information is available at the end of the article

	Patients	Controls	p-value	Patients	Controls	p-values
	RIGHT ATRIUM			LEFT ATRIUM		
		Res	ervoir function			
AEF total (%)	45.51 ± 11.66	55.91 ± 8.83	* 0.002	59.67 ± 10.03	66.23 ± 7.13	* 0.018
Ells (%)	19.73 ± 10.49	28.35 ± 11.31	* 0.009	17.08 ± 9.74	20.64 ± 5.77	* 0.017
SRs (/sec)	0.94 ± 0.37	1.19 ± 0.43	* 0.031	0.72 ± 0.32	0.89 ± 0.27	* 0.061
		Co	onduit function			
AEF passive (%)	30.62 ± 10.38	32,82 ± 12.12	0.505	47.77 ± 12.43	49.10 ± 12.21	0.053
Elle (%)	13,93 ± 8.21	18.29 ± 8.85	0.068	12.72 ± 8.09	15.28 ± 5.30	* 0.025
SRe (/sec)	-0.65 ± 0.29	-0.90 ± 0.42	* 0.021	-0.76 ± 0.38	-1.08 ± 0.44	* 0.0007
		Boost	er pump function			
AEF active (%)	14.89 ± 11.54	23.09 ± 11.66	* 0.020	11.89 ± 8.19	17.14 ± 8.95	0.143
Ella (%)	5.8 ± 4.89	10.06 ± 5.64	* 0.008	4.36 ± 3.33	5.36 ± 3.62	0.342
SRa (/sec)	-0.59 ± 0.40	-0.9 ± 0.48	* 0.020	-0.41 ± 0.32	-0.61 ± 0.35	* 0.047
RIGHT VENTRICLE					LEFT VENTRICLE	
EF total (%)	44.77 ± 8.33	52.99 ± 5.23	* < 0.001	59.07 ± 7.50	62.75 ± 7.67	0.281
EII (%)	-13.48 ± 6.26	-19.66 ± 3.60	* < 0.001	-15.67 ± 4.96	-18.37 ± 4.78	0.067
Ecc (%)				-17.61 ± 4,63	-17.81 ± 2.31	0.87
Err (%)				25.65 ± 9.83	28.22 ± 9.75	0.378

Table 1 Comparison of volumetric and functional parameters of EA patients and healthy controls.

P-value from t-test or Mann-Whitney-U-Test, *p = statistically significant = < 0.05. AEF: atrial ejection fraction; Ell: longitudinal strain; SR: strain rate; EF: ejection fraction; Ecc: circumferential strain; Err: radial strain

Authors' details

¹Pediatric Cardiology and Intensive Care, Georg-August-University Goettingen Medical Center, Goettingen, Germany. ²Cardiology and Pneumology, Georg-August-University Goettingen Medical Center, Goettingen, Germany. ³Radiology, Georg-August-University Goettingen Medical Center, Goettingen, Germany. ⁴Division of Imaging Sciences and Biomedical Engineering, The Rayne Institute, St. Thomas' Hospital,, King's College London, London, UK. ⁵Children's Hospital and Medical Center, University of Nebraska Medical Center, Omaha, NE, USA.

Published: 27 January 2016

doi:10.1186/1532-429X-18-S1-O119

Cite this article as: Steinmetz *et al.*: **Atrio-ventricular mechanics and heart failure in Ebstein's anomaly - a cardiac magnetic resonance study.** *Journal of Cardiovascular Magnetic Resonance* 2016 **18**(Suppl 1):O119.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit