

# **POSTER PRESENTATION**

Open Access

# Prospective heart tracking for respiratory motion compensation in whole-heart magnetic resonance angiography

Mehdi Hedjazi Moghari<sup>1,2\*</sup>, Tal Geva<sup>1,2</sup>, Andrew J Powell<sup>1,2</sup>

From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016

# **Background**

Electrocardiogram and respiratory navigator (NAV)gated 3D whole-heart magnetic resonance angiography (MRA) acquired with an intravascular gadolinium-based contrast agent and a non-selective inversion recovery (IR) pulse to null the myocardial signal generates a highresolution anatomic dataset allowing for a comprehensive evaluation of intra-cardiac, coronary, and vascular abnormalities [1]. In this technique, an additional IR pulse is also included to selectively restore the signal in the liver, and thus allow NAV tracking of the diaphragm (liver-lung interface). This selective IR pulse, however, excites the blood flowing from veins into the heart creating a bright inflow artifact that hinders image interpretation [2]. Therefore, we sought to develop a prospective respiratory-gating technique (Heart-NAV) that tracks the heart rather than the diaphragm position and eliminates the inflow artifact without compromising image quality.

## **Methods**

Schematics of the proposed Heart-NAV technique for non-contrast and contrast-enhanced MRA sequences are shown in Fig. 1A&1B. One of the startup pulses for MRA sequence is used to collect the centerline of k-space, and its 1-dimensional reconstruction is fed into the conventional-NAV signal analysis process to prospectively gate and track respiratory-induced heart displacement. To assess the efficacy of Heart-NAV in the correction of respiratory motion, 10 volunteers (7 females; age 31  $\pm$  6 years) underwent MRA acquisitions with conventional-NAV and Heart-NAV. For both acquisitions, imaging parameters were FOV  $\sim\!386\times230\times120~\text{mm}^3$ , spatial

resolution 1.5 mm<sup>3</sup>; α/TE/TR 90°/2.4/4.7 ms, bandwidth 0.54 kHz, SENSE factor of 2, acceptance window of 5 mm, and a 32-element phased-array coil. To compare their image quality, sharpness of the coronary arteries was subjectively graded by 2 clinicians and objectively measured (Soap Bubble tool). Subjective and objective measures were compared using a signed-rank test and paired student t-test, respectively. To evaluate the effect on image inflow artifact, 6 patients (4 males; ages 0.3-6 years) each underwent contrast-enhanced (0.03 mmol/kg of gadofosveset trisodium) IR MRA acquisitions with a conventional-NAV and with Heart-NAV.

# **Results**

All acquisitions were successfully completed. Images from 2 healthy subjects with the non-contrast MRA sequences are shown in Fig. 1C. The vessel sharpness and image quality were equivalent for conventional-NAV and Heart-NAV acquisitions but the imaging time of Heart-NAV was 10% shorter (Table 1). Fig. 1D displays images with contrast-enhanced MRA acquisitions from 2 patients. Inflow artifact was present with the conventional-NAV but not with Heart-NAV.

#### **Conclusions**

Compared to a conventional-NAV, Heart-NAV achieved similar image quality for non-contrast whole-heart MRA, and eliminated inflow artifact in contrast-enhanced whole-heart MRA.

#### Authors' details

<sup>1</sup>Cardiology, Boston Children's Hospital, Boston, MA, USA. <sup>2</sup>Pediatrics, Harvard Medical School, Boston, MA, USA.

<sup>1</sup>Cardiology, Boston Children's Hospital, Boston, MA, USA Full list of author information is available at the end of the article





**Figure 1 (A) Schematic diagram of the proposed non-contrast whole-heart MRA acquisition with Heart-NAV.** (B) Schematic diagram of the proposed contrast-enhanced whole-heart MRA with Heart-NAV. (C) Images of non-contrast whole-heart MRA acquisitions with a conventional-NAV and with Heart-NAV from 2 healthy volunteers. (D) Coronal images of contrast-enhanced whole-heart MRA acquisitions with a conventional-NAV and Heart-NAV from 2 patients. Fat sup, fat suppression pulse; FOS, fold-over suppression pulse; IR pulse, inversion recovery pulse; SP, startup pulses; SSFP, steady-state free precession pulse; T2-prep, T2-preparation pulse; TR, repetition time.

Table 1 Comparison of conventional-NAV and Heart-NAV for non-contrast whole-heart MRA (n = 10).

|                          | Conventional-NAV | Heart-NAV       | p-value |
|--------------------------|------------------|-----------------|---------|
| Scan time (min)          | 8.4 ± 2.2        | 7.5 ± 1.7       | < 0.01  |
| RCA subjective sharpness | $3.67 \pm 0.49$  | $3.77 \pm 0.37$ | 0.42    |
| RCA objective sharpness  | $0.64 \pm 0.04$  | $0.67 \pm 0.04$ | 0.18    |
| LAD subjective sharpness | $3.55 \pm 0.51$  | $3.53 \pm 0.46$ | 0.91    |
| LAD objective sharpness  | $0.61 \pm 0.07$  | $0.60 \pm 0.07$ | 0.62    |
| LCX subjective sharpness | $3.47 \pm 0.55$  | $3.43 \pm 0.53$ | 0.83    |
| LCX objective sharpness  | $0.56 \pm 0.07$  | $0.56 \pm 0.09$ | 0.85    |

Values are mean  $\pm$  standard deviation. Subjective sharpness: 1-poor to 4-excellent. Objective sharpness: 0-blurred to 1-sharp. LAD, left anterior descending coronary artery; LCX, left circumflex coronary artery; RCA, right coronary artery.

Published: 27 January 2016

#### References

- I. Makowski MR, et al: Radiology 2011, 260(3).
- 2. Peters DC, et al: Radiology 2007, 243(3):690-695.

# doi:10.1186/1532-429X-18-S1-P12

Cite this article as: Moghari et al.: Prospective heart tracking for respiratory motion compensation in whole-heart magnetic resonance angiography. Journal of Cardiovascular Magnetic Resonance 2016 18(Suppl

# Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

