

POSTER PRESENTATION

Early detection and quantification of cerebral venous thrombosis by Magnetic Resonance Black Blood Thrombus Imaging (MRBTI)

Qi Yang^{1*}, Zhaoyang Fan¹, Xiaoming Bi², Debiao Li¹

From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016

Background

Early diagnosis of cerebral venous and sinus thrombosis (CVT) is currently a major clinical challenge. We proposed a selective MR black-blood thrombus imaging technique(MRBTI).

Methods

MRBTI was performed on 23 patients with proven CVT and 24 patients with negative CVT by conventional imaging techniques. Signal-to-noise ratio (SNR) was calculated for the detected thrombus and contrast-to-noise ratio (CNR) was measured between thrombus and lumen, and also between thrombus and brain tissue. The feasibility of using MRBTI for thrombus volume measurement was also explored.

Results

With effectively suppressed blood signal, MRBTI correctly identified 113 out of 116 segments with proven CVT with a sensitivity of 97.4%. In 527 out 531 segments, CVT was ruled out correctly with a specificity of 99.3%. Quantification of thrombus volume was successfully conducted in all patients with CVT, and mean volume of thrombus was 10.5 ± 6.9 cc.

Conclusions

The current findings support that MRBTI allows direct selective visualization of thrombus as opposed to indirect detection of venous flow perturbation and can be used as a promising first line diagnostic imaging tool.

Authors' details

¹Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA. ²MR R&D, Siemens Healthcare, Los Angeles, CA, USA.

Published: 27 January 2016

doi:10.1186/1532-429X-18-S1-P16

Cite this article as: Yang *et al.*: **Early detection and quantification of cerebral venous thrombosis by Magnetic Resonance Black Blood Thrombus Imaging (MRBTI).** *Journal of Cardiovascular Magnetic Resonance* 2016 **18**(Suppl 1):P16.

Full list of author information is available at the end of the article

© 2016 Yang et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

¹Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA

Figure 1 MRBTI of a 27-year-old male patient with sub-acute CVT. A-C: MRBTI demonstrated hyper-intense signal intensity in the superior sagittal sinus (arrowheads), the right transverse and sigmoid sinuses (arrowheads), and the cortical veins (arrows) suggesting intraluminal thrombus formation. D-F: All thrombi semi-automatically outlined by software based on their high signal contrast were rendered with red color and volume was 21.5 cc. G-I: sagittal, coronal and axial sections of maximum intensity projection (MIP) reformations of MRDTI better depicted the thrombosed segments with hyper-intense signals.