

POSTER PRESENTATION

Accelerated phase contrast measurements of fetal blood flow using compressed sensing

Christopher Roy^{1,2*}, Mike Seed³, Christopher Macgowan^{1,2}

From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016

Background

Phase contrast (PC) MR is routinely used to quantify blood flow in postnatal subjects and through the use of metric optimized gating (MOG) has been employed in studies of fetal blood flow in both normal pregnancies and fetal congenital heart disease [1-3]. Still, the scan time required for high resolution fetal PCMR remains a practical limitation. Recently, compressed sensing (CS) has been integrated with MOG for accelerated CINE imaging of the fetal cardiac anatomy [4]. Here we examine the feasibility of CS for reconstructing retrospectively undersampled PC MR measurements of fetal vessels.

Methods

Fully sampled PCMR data from the ascending and descending aorta were acquired in five fetal subjects (2 normal, 3 congenital heart disease). Typical fetal scan parameters where: VENC 150 cm/s, field of view 240×240 mm², voxel size $1.25 \times 1.25 \times 5$ mm³, TR/ TE 6.6 ms/2.92 ms, 4 views per segment, scan time ~34 seconds. For each fully sampled data set MOG was performed to create time resolved CINE data sets which were then retrospectively undersampled (R = 2,4,6) and quantitatively compared to the fully sampled MOG data.

Results

Figure 1 shows an example flow curve of the human fetal ascending aorta for both fully sampled and undersampled (R=6) reconstructions. Figure 2 demonstrated comparable measurements of total blood volume per cardiac cycle between fully sampled and undersampled reconstructions (R=6). Finally a Bland-Altman plot (Figure 2b) shows good agreement between the two reconstruction methods.

¹Medical Biophysics, University of Toronto, Toronto, ON, Canada Full list of author information is available at the end of the article

Conclusions

The feasibility of CS for reconstructing accelerated PC MR measurements of human fetal blood flow was accessed through retrospective undersampling of fully sampled MOG data. The results yielded accurate flow measurements for acceleration rates up to R=6. Further study using prospectively undersampled data is needed to evaluate this technique for clinical use.

Authors' details

¹Medical Biophysics, University of Toronto, Toronto, ON, Canada. ²Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada. ³Division of Pediatric Cardiology and Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada,

© 2016 Roy et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Figure 2 Total blood volume per cardiac cycle for undersampled (R=6) versus fully sampled reconstructions. a) Line plot. b) Bland-Altman plot.

Published: 27 January 2016

References

- 1. Jansz , et al: Magn. Reson. Med 2010, 64:P31.
- 2. Prsa : Circ Cardiovas Imaging 2014, 7(4):663.
- 3. Al Nafisi : J Cardiovas Magn Reson 2013, 15:65.
- 4. Roy , et al: Proc. 23rd ISMRM 2015, 3689.

doi:10.1186/1532-429X-18-S1-P30

Cite this article as: Roy *et al.*: Accelerated phase contrast measurements of fetal blood flow using compressed sensing. *Journal of Cardiovascular Magnetic Resonance* 2016 18(Suppl 1):P30.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central