

POSTER PRESENTATION

Quantitative circumferential strain analysis using 3-Tesla feature-tracking cardiovascular magnetic resonance in patients with old myocardial infarction

Ryo Ogawa^{1*}, Tomoyuki Kido¹, Masashi Nakamura^{1,2}, Teruhito Kido¹, Akiyoshi Ogimoto¹, Masao Miyagawa¹, Teruhito Mochizuki¹

From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016

Background

Feature-tracking cardiovascular magnetic resonance (FT-CMR) provides quantification of myocardial strain by analyzing cine MR images. A previous study has reported that CS measured by FT-CMR showed reasonable agreement with tagged MR in healthy volunteers. However, the usefulness of FT-CMR in patients with old myocardial infarction (OMI) has not been investigated. The purpose of this study was to evaluate diagnostic ability of CS by FT-CMR in patients with OMI.

Methods

Between March 2011 and August 2012, a total of 20 consecutive patients with OMI were enrolled in this study. All cases were performed CMR examination using a 3-Tesla MR scanner (Philips Achieva). CS by FT-CMR was analyzed using Ziostation2 (Ziosoft Inc., Tokyo, Japan). The peak subendocardial CS was quantified for 16 segments of 3 short-axis slices (basal, mid, and apical). With interobserver consensus, myocardial segments were categorized as remote normal segments (n = 173), adjacent segments (n = 70), and infarcted segments (n = 77) from the results of late gadolinium enhancement (LGE) with CMR. An infarcted segment was defined as an area with the presence of LGE. An adjacent segment.

Results

The peak subendocardial CS was significantly lower in infarcted segments than in remote normal segments. (-6.3 \pm 3.9 vs -11.8 \pm 3.3; p < 0.001). Moreover, the peak subendocardial CS was significantly lower in adjacent segments than in remote normal segments. (-9.5 \pm 3.7 vs -11.8 \pm 3.3; p < 0.05). A cutoff value of -7.9% for peak subendocardial CS allowed differentiation between normal and infarcted segments with a sensitivity of 68%, specificity of 75%, accuracy of 73%, positive predictive value of 55%, negative predictive value of 84%, and an area under the curve (AUC) of 0.75.

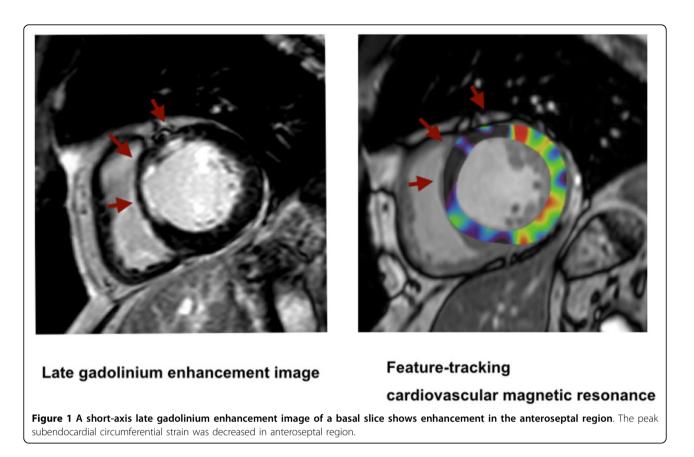
Conclusions

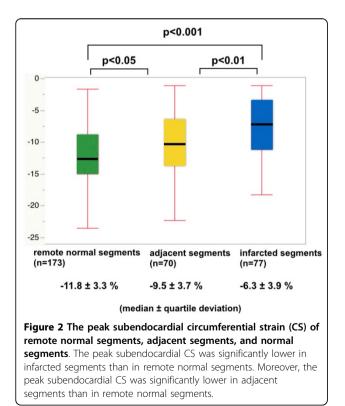
FT-CMR can quantify myocardial strain without increasing examination time. Moreover, FT-CMR is useful for detecting infarcted segments.

Authors' details

¹Ehime University Graduate School of Medicine, Toon, Japan. ²Saiseikai Matsuyama Hospital, Matsuyama, Japan.

Published: 27 January 2016


doi:10.1186/1532-429X-18-S1-P84 Cite this article as: Ogawa et al.: Quantitative circumferential strain analysis using 3-Tesla feature-tracking cardiovascular magnetic resonance in patients with old myocardial infarction. Journal of Cardiovascular Magnetic Resonance 2016 18(Suppl 1):P84.


¹Ehime University Graduate School of Medicine, Toon, Japan

Full list of author information is available at the end of the article

© 2016 Ogawa et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

