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Background
Left atrium (LA) size and function are powerful biomar-
kers of cardiovascular outcomes in many diseases. We
sought to determine if the expected age-associated
increase in arterial stiffness (AS) and left ventricular
(LV)-LA afterload leads to corresponding effects on LA
function and this can be measured with cardiovascular
magnetic resonance (CMR). Additionally, we investi-
gated the significance of these markers in asymptomatic
individuals with cardiovascular risk factors (CRF).

Methods
Female subjects from the Twins UK cohort with no
overt cardiac disease were prospectively recruited for
a CMR study on a 1.5 Tesla scanner (Philips, Best,
Netherlands) with tissue characterization (T1 mapping
and late gadolinium enhancement). Patients with atrial
fibrillation, valvular disease, regional wall motion
abnormalities at rest or areas of myocardial enhance-
ment were excluded from the analysis. LA reservoir,
conduit and contractile functions were quantified by
both fractional volume changes and CMR feature track-
ing derived strain and strain rate. Additionally, CMR
feature tracking derived myocardial deformation indices
and pulse wave velocity (PWV) (foot-to-foot methodol-
ogy), were calculated.

Results
40 female twins were enrolled. Baseline characteristics
are shown in table 1. Bivariate analysis showed that LA
volume, LA reservoir, conduit and booster function cor-
related with LV deformation parameters and with PWV,

a surrogate marker of AS (p < 0.001 to 0.044). Further-
more, LA function components assessed by fractional
volume changes were significantly different in the pre-
sence of ≥1 risk factors (p < 0.001 to 0.012). Multivari-
able regression analysis confirmed that only the conduit
and booster components were associated with changes
in LV deformation and PWV (figure 1, panel A).
Subjects with CRF had lower LA conduit function and
higher booster function. We hypothesize that this can
be attributed to an increase in atrial afterload in
response to increased LV stiffness-AS that occurs with
aging but is more pronounced subjects with CRF as is
demonstrated by lower LV deformation indices and
higher calculated PWV. ROC analysis showed that
LA volume and function parameters outperformed
LV deformation and AS parameters in the evaluation
of subclinical cardiac changes in the presence of CRF
(figure 1, panels B and C)

Conclusions
LA mechanics correlates with LV deformation para-
meters and PWV and differs significantly in elderly sub-
jects with CRF compared to their healthy age-matched
peers. LA structural remodeling is predicted by AS (as
expressed by PWV/LV parameters) independently of
conventional CRF, thus supporting the hypothesis of
arterial-ventricular-atrial coupling (AVAC). These novel
markers of LA performance can potentially uncover
abnormal AVAC in patients with CRF but no overt car-
diac disease and give valuable insights into ventricular
dysfunction beyond standard volumetrics.
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Table 1 Baseline characteristics

CHARACTERISTICS ALL CRF = 0 CRF≥1 p

Age, years 69 ± 5.6 [57-77] 68 ± 5.6 69 ± 5.6 0.114

Women, n (%) 40 (100%) 20 20 -

Cardiovascular risk factors (≥1) 20 (50%) 0 20 <0.001

Hypertension, n (%) 9 (21%) 0 9 0.0012

Diabetes, n (%) 0 0 0 -

Dyslipidemia 16 (40%) 0 16 <0.001

Smoker (former), n (%) 4 (10%) 0 4 0.106

Pulse wave velocity [PWV (m/s)] 8.127 ± 2.77 6.630 ± 2.77 8.127 ± 3.03 <0.001

LV end-diastolic volume indexed [LVEDVi (mL/m2)] 70 ± 14.5 67 ± 8.4 71 ± 13.1 0.079

LV end-systolic volume [LVESVi (mL/m2)] 41 ± 9.6 41 ± 6.4 35 ± 9.6 0.153

LV ejection fraction [LVEF (%)] 67 ± 7.4 61 ± 7.4 70 ± 7.4 0.975

LV mass indexed (mg/m2) 54 ± 12.5 53 ± 12.5 55 ± 6.4 0.637

Global circumferential strain (GCs) -20.5 ± 8.6 -24.7 ± 10.4 -16.4 ± 3.5 0.001

Global radial strain (GRs) 29.8 ± 12.0 30.7 ± 6.9 28.9 ± 15.7 0.652

Global circumferential strain rate peak systole [GCSr (syst)] -1.58 ± 0.42 -1.58 ± 0.41 -1.57 ± 0.45 0.924

Global radial strain rate peak systole [GRSr (syst)] 1.77 ± 0.96 2.44 ± 0.50 1.09 ± 0.83 <0.001

Global circumferential strain rate early diastole [GCSr (diast)] 2.17 ± 1.90 1.85 ± 0.52 2.47 ± 2.6 0.293

Global radial strain rate early diastole [GRSr (diast)] -1.7 ± 0.83 -2.21 ± 0.61 -1.2 ± 0.71 <0.001

Native T1 (mid septum, ms) 979 ± 37.6 966 ± 30.6 993 ± 39.9 0.022

LA volume indexed [LAVI (mL/m2)] 42 ± 14.0 34 ± 9.6 50 ± 13.4 <0.001

LA ejection fraction total [LAEF total (%)] 61 ± 11.6 68 ± 7.8 53 ± 9.9 <0.001

LA conduit function (%) 34 ± 12.0 42 ± 10.6 26 ± 7.7 <0.001

LA booster pump function (%) 33.3 ± 9.0 30 ± 6.8 37 ± 9.7 0.012

LA total strain (εs) 28.0 ± 8.0 30.7 ± 7.4 25.2 ± 7.9 0.029

LA passive strain (εe) 18.6 ± 7.2 23.3 ± 5.2 14.0 ± 5.7 <0.001

LA active strain (εa) LA active strain (εa) 7.5 ± 3.6 11.2 ± 4.6 0.006

LA peak positive strain rate (SRs) 1.2 ± 0.4 1.4 ± 0.4 1.1 ± 0.3 0.016

LA peak early negative strain rate (SRe) -1.2 ± 0.6 -1.7 ± 0.4 -0.8 ± 0.3 <0.001

LA peak late negative strain rate (SRa) -1.0 ± 0.4 -1.0 ± 0.3 -0.9 ± 0.4 0.341

CRF, cardiovascular risk factors.

Figure 1 Scatter plots (Panel A) showing the relationships between LA-LV deformation parameters and LA-PWV (abbreviations as
shown in table 1). GRs (syst), GRSr (diast), and PWV were identified as independent determinants of LA mechanics in individuals with risk
factors on multivariate analysis. Panels B and C. ROC curves comparing the sensitivity and specificity of different diagnostic parameters used in
the analysis in the presence of cardiovascular risk factors.
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