

WALKING POSTER PRESENTATION

Open Access

Native left ventricular myocardial T₁ spatial heterogeneity in non-ischemic dilated cardiomyopathy

Abyaad Kashem^{1*}, Ravi V Shah¹, Shingo Kato¹, Steven Bellm¹, Sébastien Roujol¹, Tamer Basha¹, Jihye Jang¹, Warren J Manning^{1,2}, Reza Nezafat²

From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016

Background

Myocardial fibrosis is involved in the pathology of non-ischemic dilated cardiomyopathy (NICM). Recently, the application of native (non-contrast) myocardial T_1 measurement has been proposed as an imaging biomarker of cardiac remodeling. However, spatial heterogeneity in T_1 measurements has been observed across different segments and slices. Furthermore, T_1 values measured with current T_1 mapping sequences are influenced by myocardial T_2 values. The objective of this study was to 1) assess the spatial heterogeneity of T_1 measurements across different segments and slices in healthy subjects and patients, and 2) determine the association of native T_1 with myocardial structure and function.

Methods

We prospectively studied 39 NICM patients (LVEF \leq 50% without evidence of prior infarction by CMR) and 30 subjects with normal LV systolic function without known cardiovascular disease. CMR was performed using a 1.5-T MRI scanner (Philips Achieva). Native T_1 mapping was performed using slice-interleaved T_1 mapping sequence (STONE) [1]. T_2 mapping was performed using slice-interleaved T_2 mapping [2]. Voxel-wise T_1 and T_2 were estimated using a 2-parameter and 3-parameter model [3]. All images were corrected for motion [4]. T_1 , T_2 , and extra-cellular volume (ECV) measurements were measured using a 16 segments AHA model across the base, mid, and apical LV.

¹Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, Boston, MA, USA

Full list of author information is available at the end of the article

Results

NICM participants (57 ± 15 years) were predominantly male (74%). By design, all had a reduced LV ejection fraction (mean LVEF 34 ± 10%). Figure 1 shows native T1, T2, and ECV in two patients with a NICM. Parametric maps to the right in each panel demonstrate full ventricular coverage. The regional distribution of native myocardial T1 was similar in patients with and without NICM[RN1], as shown in Figure 2. Relative to subjects without NICM, subjects with NICM had a higher native T_1 (1131 ± 51 vs. 1070 ± 28 msec; p < 0.0001), a higher ECV (0.28 \pm 0.04 vs. 0.25 \pm 0.02, P = 0.001) and a longer myocardial T_2 (52 ± 8 vs. 47 ± 5 msec; P = 0.01). After multivariable adjustment, a lower global native T₁ time was associated with a higher LVEF (b = -0.59, P = 0.0003), higher right ventricular ejection fraction (b = -0.47, P = 0.006), and lower left atrial volume index (b = 0.51, P = 0.001).

Conclusions

In NICM, native myocardial T_1 is elevated in a homogeneous manner, suggesting a global (not regional) abnormality in myocardial tissue composition. This low variability is similar between healthy and NICM patients across different segments. For subjects with NICM, native T_1 is associated with biventricular systolic function and left atrial volume, and may represent a non-contrast marker of tissue remodeling in this cohort.

Authors' details

¹Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, Boston, MA, USA. ²Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, USA.

Published: 27 January 2016

© 2016 Kashem et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Figure 1 (A) Images from a 47-year-old woman with a NICM with moderate reduction in LV function (LV ejection fraction 30%). (B) Images from a 39-year-old heathy male (LV ejection fraction 61%).

References

- 1. Weingartner: MRM 2015.
- 2. Basha: MRM 2015.
- 3. Akcakaya: MRM 2015.
- 4. Roujol: *JCMR* 2015.

doi:10.1186/1532-429X-18-S1-Q41

Cite this article as: Kashem *et al.*: **Native left ventricular myocardial** T₁ spatial heterogeneity in non-ischemic dilated cardiomyopathy. *Journal of Cardiovascular Magnetic Resonance* 2016 **18**(Suppl 1):Q41.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

