

WALKING POSTER PRESENTATION

Extracellular volume fraction correlates with myocardial stiffness and allows for differentiation between impaired active relaxation and passive stiffness in heart failure with preserved ejection fraction

Karl-Philipp Rommel^{*}, Maximilian von Roeder, Thomas Stiermaier, Konrad Latuscynski, Christian Oberueck, Stephan Blazek, Marcus Sandri, Christian F Luecke, Matthias Gutberlet, Gerhard Schuler, Philipp Lurz

From 19th Annual SCMR Scientific Sessions Los Angeles, CA, USA. 27-30 January 2016

Background

Optimal patients characterization in Heart Failure with Preserved Ejection Fraction (HFpEF) is essential to tailor successful treatment strategies.

Cardiac magnetic resonance derived T1-Mapping allows for non-invasive quantification of diffuse myocardial fibrosis as extracellular volume fraction (ECV).

We aimed to elucidate the diagnostic performance of T1-Mapping in HFpEF by examining the relationship between ECV and invasively measured parameters of diastolic function and investigated the potential of ECV to differentiate between different pathomechanisms in HFpEF.

Methods

We performed T1-Mapping in 21 patients with HFpEF and 11 patients without heart failure symptoms. Pressure-volume-loops were obtained with a conductance catheter during basal conditions and handgrip exercise. Transient preload reduction was used to extrapolate the diastolic stiffness constant.

Results

Patients with HFpEF showed a higher ECV (p = 0.001), an elevated load-independent passive LV-stiffnessconstant β (p < 0.001) and a longer time constant of active LV-relaxation τ (p = 0.04). ECV correlated highly

Cardiology, Heartcentre Leipzig, Leipzig, Germany

with β (r = 0.75, p <0.001). After multivariate analysis, ECV remained the only independent predictor of β .

Within the HFpEF cohort, patients with ECV > median showed a higher LV-stiffness-constant (p = 0.05) whereas ECV < median identified patients with a prolonged active LV-relaxation (p = 0.01) and a marked hypertensive reaction to exercise due to a pathologic arterial elastance (p = 0.05).

Conclusions

Diffuse myocardial fibrosis, assessed by CMR derived T1-Mapping, independently predicts invasively measured LV stiffness in HFpEF. In addition, ECV helps to non-invasively distinguish the role of impaired active relaxation and passive stiffness. It also refines characterization of patients, which represents a prerequisite for any successful therapy in the future.

Published: 27 January 2016

doi:10.1186/1532-429X-18-S1-Q66 Cite this article as: Rommel *et al.*: Extracellular volume fraction correlates with myocardial stiffness and allows for differentiation between impaired active relaxation and passive stiffness in heart failure with preserved ejection fraction. *Journal of Cardiovascular Magnetic Resonance* 2016 18(Suppl 1):Q66.

© 2016 Rommel et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

