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Assessment of cardiovascular physiology
using dobutamine stress cardiovascular magnetic
resonance reveals impaired contractile reserve in
patients with cirrhotic cardiomyopathy
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Abstract

Background: Liver cirrhosis has been shown to affect cardiac performance. However cardiac dysfunction may only
be revealed under stress conditions. The value of non-invasive stress tests in diagnosing cirrhotic cardiomyopathy is
unclear. We sought to investigate the response to pharmacological stimulation with dobutamine in patients with
cirrhosis using cardiovascular magnetic resonance.

Methods: Thirty-six patients and eight controls were scanned using a 1.5 T scanner (Siemens Symphony TIM;
Siemens, Erlangen, Germany). Conventional volumetric and feature tracking analysis using dedicated software
(CMR42; Circle Cardiovascular Imaging Inc, Calgary, Canada and Diogenes MRI; Tomtec; Germany, respectively)
were performed at rest and during low to intermediate dose dobutamine stress.

Results: Whilst volumetry based parameters were similar between patients and controls at rest, patients had a
smaller increase in cardiac output during stress (p = 0.015). Ejection fraction increase was impaired in patients
during 10 μg/kg/min dobutamine as compared to controls (6.9 % vs. 16.5 %, p = 0.007), but not with 20 μg/kg/min
(12.1 % vs. 17.6 %, p = 0.12). This was paralleled by an impaired improvement in circumferential strain with low dose
(median increase of 14.4 % vs. 30.9 %, p = 0.03), but not with intermediate dose dobutamine (median increase of
29.4 % vs. 33.9 %, p = 0.54). There was an impaired longitudinal strain increase in patients as compared to controls
during low (median increase of 6.6 % vs 28.6 %, p < 0.001) and intermediate dose dobutamine (median increase of
2.6%vs, 12.6 % p = 0.016). Radial strain response to dobutamine was similar in patients and controls (p > 0.05).

Conclusion: Cirrhotic cardiomyopathy is characterized by an impaired cardiac pharmacological response that can
be detected with magnetic resonance myocardial stress testing. Deformation analysis parameters may be more
sensitive in identifying abnormalities in inotropic response to stress than conventional methods.
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Background
Systolic and diastolic dysfunction, as well as electro-
physiological abnormalities have been described in pa-
tients with cirrhosis [1–3]. Although previous studies
have reported the presence of myocardial dysfunction at
resting states [4–6], cirrhotic cardiomyopathy is usually
clinically silent and may only be unmasked during
physiological or inotropic stress [7].
Pharmacological stress tests using echocardiography or

SPECT are often used in cirrhotic patients for diagnosing
coronary artery disease before liver transplantation. Al-
though blunted responses of stroke volume and ejection
fraction (EF) to dobutamine have also been reported
[8], other studies have questioned these findings, par-
ticularly in patients with mild disease [9]. Therefore,
most authors recommend that dobutamine stress tests
should be reserved for excluding ischaemic heart disease
before liver transplantation [10].
The inability to increase cardiac output under stress

conditions has been associated with the development of
hepatorenal syndrome and mortality in cirrhosis [11, 12];
therefore, inotropic incompetence detection may be clin-
ically relevant, identifying patients with a higher risk of
complications, which should probably be managed more
aggressively.
Cardiovascular magnetic resonance (CMR) has evolved

into the reference standard methodology for assessment
of cardiac morphology and volumes [13, 14]. Myocardial
strain – which may reflect systolic function more accur-
ately than conventional, highly load dependent, indices
such as ejection fraction - can also be assessed using
CMR, both at rest and during inotropic stimulation with
dobutamine [15]. The response of strain to stress has
not been previously studied in patients with cirrhosis.
To test the hypothesis that a pharmacological stress

test could reveal systolic incompetence in patients with
cirrhosis, we performed a comprehensive analysis of sys-
tolic function during pharmacological stress, using CMR.

Methods
The study protocol was approved by the hospital's ethics
commitee (Comissão de ética CentroHospitalar de Gaia/
espinho EPE) and complies with the declaration of
Helsinki. Written informed consent was obtained from
all participants.
Thirty-six patients with cirrhosis followed in a hepa-

tology outpatient clinic, able to comply with the instruc-
tions during the exam, were recruited and referred to
CMR. The diagnosis of cirrhosis was based on clinical,
laboratory and ultrasonographic criteria and was also
confirmed by liver biopsy in 22 % of the cases. Patients
with a known history of hypertension, diabetes, cardiac
disease or relevant ECG abnormalities were excluded.
Patients with large volume ascites and/or unable to

tolerate breath-holding, renal insufficiency (creatinine
clearance ≤ 60 ml/min/1.73 m2) or standard contrain-
dications to CMR or gadolinium were also excluded.
A group of eight subjects, with similar age and sex

distribution as the patient group, without known car-
diovascular risk factors, referred to CMR for a differ-
ent indication (mostly atypical chest pain evaluation) and
with a completely normal scan, was used as control.

CMR acquisition
Patient preparation
Patients were instructed to refrain from smoking, coffee,
tea, aminophylline, for 24 h before the scan. Beta-blockers
were suspended 48 h before the study.

CMR protocol
Images were acquired using a 1.5 T scanner (Siemens
Symphony TIM; Siemens, Erlangen, Germany) with a
6-channel anterior chest coil and spinal coils within
the gantry table.

Cine imaging
After scout images, cine images using a retrospective
ECG-gated balanced steady state free-precession sequence
(TR 3.0 ms, TE 1.3 ms, flip angle < 90°) were acquired
during brief periods of end-expiratory breath-hold. Two-,
four and three-chamber orientations, as well as multiple
equidistant short-axis planes (slice thickness 8 mm; gap
2 mm) allowing coverage of the entire cardiac volume
were performed. Thirty phases were obtained per cardiac
cycle.
For dobutamine stress imaging, three long-axis and

three short-axis slices (basal, mid-ventricular and apical)
were acquired, in order to cover 16 myocardial segments
[16]. Dobutamine was infused intravenously at 3-min
stages at doses of 10 and 20 μg/kg/min. Repeat short-
axis images as well as long-axis images were acquired at
the end of each stage. During dobutamine infusion,
patient symptoms, heart rate, blood pressure, and elec-
trocardiogram were monitored.

Aortic flow imaging
Aortic flow was measured using phase contrast gradi-
ent echo pulse sequence with one-direction “through-
plane” motion-encoding (slice thickness 5 mm; FOV
320 × 320 mm2, in-plane resolution ≤1 mm, TR/TE =
5.9/3.0 ms, flip angle 22°, bandwidth ~350 Hz/pixel),
centered in ascending aorta and aligned orthogonally
to the expected main blood flow direction in two spatial
directions, at the level of the pulmonary bifurcation.
Velocity encoding sensitivity (Venc) was adapted to the
expected velocities (typically 150 for the rest images
and 300 during the dobutamine-stress acquisitions).
Thirty frames were acquired per cardiac cycle using a
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free-breathing technique with three excitations per
k-space line.

Perfusion imaging
Our protocol for stress perfusion imaging has been pre-
viously described [17]. Maximal hyperemia was achieved
with intravenous adenosine (140 μg.kg − 1.min − 1) infu-
sion for 5 min. Within the last 2 min of infusion, an intra-
venous bolus of 0.07 mmol/Kg of gadobutrol (Gadovist,
Bayer HealthCare Pharmaceuticals, Berlin, Germany), was
injected. Three short-axis slices (basal, mid-ventricular
and apical) were imaged during the first pass of the bolus
of gadolinium using a gradient echo pulse sequence with
a single saturation pre-pulse per R–R interval shared over
the three slices. Typical sequence parameters were: echo
time, 1.18 ms; repetition time, 192 ms; inversion time,
110 ms; flip angle, 12°; slice thickness, 10 mm; field of
view, 290–460 mm; matrix, 192 × 128 mm; in-plane
spatial resolution, 1.5–2.4 mm [2]; bandwidth, 789 Hz
per pixel. Patients were asked to hold their breath on
full expiration for the duration of the first pass of the
gadolinium bolus.

Late gadolinium enhancement
Late gadolinium-enhancement (LGE) was assessed using a
gradient-recalled phase-sensitive inversion-recovery (PSIR)
sequence (TR 46 ms, TE 3.4 msec, flip angle 15°, IR
time 280–360 msec) ≥10 min after the administration
of 0.2 mmol/kg of gadobutrol.

CMR analysis
Images were anonymized and analysis was performed
by operators blinded to clinical data.
A commercially available software (CMR42; Circle

Cardiovascular Imaging Inc., Calgary, Canada) was used
to assess left and right ventricular volumes and function,
from the short-axis cine images stack. Left ventricular
ejection fraction (EF) during stress was derived from two
long axis and one short axis; for comparison the same
method was also used to calculate resting EF. Phase-
contrast pulse sequences at rest and peak dobutamine
dose were analyzed with the same software, to determine
cardiac output.
Feature tracking (FT), a technique analogous to echo-

cardiographic speckle tracking, which allows tracking of
tissue voxel motion of CMR cine images [18–21] was
used to assess left ventricular strain. Four-, two- and
three-chamber views were used to calculate longitudinal
strain. Radial strain and circumferential strain were
derived from the three short-axis planes. For each par-
ameter three repeated measurements were performed
and subsequently averaged. Global longitudinal strain
(GLS), global radial strain (GRS) and global circumferen-
tial strain (GCS) were defined as the mean strain of the

three individual planes. Measurements were performed
at rest and at each stage of dobutamine infusion.
For the stress perfusion analysis, perfusion defects

were defined as subendocardial or transmural visually
dark myocardial areas when compared with remote
healthy myocardium, persisting for at least 10 frames.

Reproducibility
Reproducibility of FT derived strain was assessed in 10
randomly selected subjects. For intraobserver variability,
the same operator repeated the measurements, more
than 4 weeks after the initial analysis. For interobserver
variability, a second operator re-analysed the images.

Statistical analysis
Data were stored and analyzed using IBM SPSS Sta-
tistics, Version 20.0 (IBM Corp., Armonk, NY, USA).
Results are presented as median (25th–75th percent-
ile) for quantitative variables and as n (%) for categor-
ical variables. A significance level of 5 % was used.
The Mann–Whitney test was used to evaluate dif-

ferences in continuous variables between groups. The
Chi-squared test was used to compare proportions.
Spearman’s coefficient was used to test correlations.
Bland–Altman analysis was performed for reproduci-
bility testing.

Results
Clinical characteristics and laboratorial characteristics
of patients and controls are shown in Table 1. Most
patients (n = 27, 75 %) were in Child-Pugh class A, eight
patients (17.8 %) were in class B and only one patient
was in class C.
CMR –derived morphological and functional parame-

ters were similar at rest in patients and controls (Table 2).
We found no differences in resting GLS, GCS or GRS
between patients and controls. Child-Pugh class A pa-
tients had a trend towards lower left atrial volume com-
pared to patients with more severe (class B and C)
disease [43.3 ml/m2 (35.4-49.5) vs 47.6 ml/m2 (44.1-56.7);
p = 0.08]. No differences in any of the other parameters
were found, in resting conditions, between these two
groups of patients.

Dobutamine stress
The response of hemodynamic and strain parameters to
increasing doses of dobutamine is shown in Table 3 and
Figs. 1 and 2. Compared to controls, patients had a
smaller increase of stroke volume and cardiac output
during dobutamine perfusion. There was no difference in
heart rate response to stress in the two groups. The in-
crease in EF was lower in patients than in controls at the
dose of 10 μg/kg/min of dobutamine (median percentual
increase of 6.9 % (3.5-12.1) vs 16.5 % (8.5-23.3), p = 0.007),
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but not at 20 μg/kg/min (median percentual increase
of 12.1 % (6.8-17.9) vs 17.6 % (10.4-28.0), p = 0.12).
The improvement in GLS during the infusion was sig-
nificantly lower in patients compared to controls, both
at 10 μg/kg/min (median percentual increase of 28.6 %
(6.6 % (−5.8-17.0) vs 18.9-54.4), p < 0.001) and at 20 μg/
kg/min (median percentual increase of 2.6 % (−5.5-16.7)
vs 12.6 % (10.4-29.2), p = 0.016). Global circumferential
strain increased less significantly in patients as com-
pared to controls at 10 μg/kg/min (median percentual
increase of 14.4 % (0.6-22.9) vs 30.9 % (8.6-41.5),
p = 0.03); the response of GCS to 20 μg/kg/min of
dobutamine was not significantly different between the
two groups (median percentual increase of 29.4 %
(10.9-41.1) vs 33.9 % (16.7-48.5), p = 0.54). The
response of GRS to pharmacological stress was not dif-
ferent in patients versus controls (median percentual in-
crease of 7.7 % (−2.4-15.2) vs 13.6 % (5.7-26), p = 0.11 at
10 μg/kg/min of dobutamine and 4.3 % (0.6-8.1) vs 3.1 %
(−0.2-9.3), p = 0.82 at 20 μg/kg/min of dobutamine).
We found no differences in the response of hemo-

dynamic and strain parameters to dobutamine between
patients in Child-Pugh class A versus the others or be-
tween patients on diuretics versus patients without prior
diuretic use.
There was a correlation between the percentual change

of GLS and the percentual change in left ventricular
stroke volume (Spearman’s rho = 0.42, p = 0.007). Changes
in stroke volume and GCS (Spearman’s rho = 0.11,
p = 0.48) or GRS (Spearman’s rho = 0.07, p = 0.69) were
not correlated.

Table 1 Clinical and laboratorial characteristics of patients and
controls

Patients (n = 36) Controls (n = 8) p

Age 54 (48-61) 52 (45-54) 0.12

Male gender (n, %) 30 (83.3) 5 (62.5) 0.33

Cirrhosis aetiology

Alcoholic (n, %) 21 (58.3)

Viric (n, %) 10 (27.8)

Other (n, %) 5 (13.9)

Child-Pugh score 5 (5-7)

MELD score 9 (7-11)

Diuretic use (n, %) 7 (19.4 %)

Heart rate 72 (58-78) 69 (51-72) 0.20

Mean blood pressure 98 (88-106) 100 (99-104) 0.64

Blood analysis

Haemoglobin (g/dL) 13.4 (11.5-15.3) 14.4 (13.6-15.5) 0.21

Platelet count (×109/L) 101 (76-142) 225 (182-256) <0.001

Creatinine (mg/dL) 0.63 (0.52-0.79) 0.74 (0.49-0.95) 0.66

Sodium (mEq/L) 139 (137-141) 142 (140-143) 0.035

Total bilirubin (mg/dL) 0.92 (0.61-1.30) 0.34 (0.22-0.48) <0.001

Albumin (g/dL) 4.1 (3.6-4.5) 4.6 (4.5-4.9) 0.005

NT-ProBNP (pg/mL) 58 (30-140) 32 (22-53) 0.20

CRP (mg/dL) 0.25 (0.11-0.52) 0.16 (0.06-0.38) 0.42

INR 1.2 (1.1-1.3) 1.0 (0.9-1.1) 0.001

Results are presented as median (25th–75th percentile) for
quantitative variables
CRP C-Reactive Protein, INR International Normalized Ratio, MELD Model for
End-Stage Liver Disease, NT-proBNP N-terminal pro–B-type natriuretic peptide

Table 2 CMR parameters at rest of patients and controls

Patients
(n = 36)

Controls
(n = 8)

p

Left atrial volume (ml/m2) 44.9 (36.1-51.9) 44.2 (37.5-49.4) 0.92

Right atrial area (cm2) 21 (18-23) 22 (20-25) 0.35

Left ventricular diastolic volume (ml/m2) 75.1 (65.1-92.1) 87.7 (74.1-94.6) 0.27

Left ventricular systolic volume (ml/m2) 24.4 (19.1-28.9) 28.0 (23.2-33.3) 0.19

Left ventricular ejection fraction (%) 67 (64-72) 66.0 (64-70) 0.66

Left ventricular mass (g/m2) 54.7 (46.7-62.0) 55.7 (45.7-63.5) 0.96

Right ventricular diastolic volume (ml/m2) 84.5 (67.9-92.2) 84.1 (70.5-97.7) 0.46

Right ventricular ejection fraction (%) 57 (52–62) 58 (56-61) 0.46

Cardiac output (l/min) 6.5 (5.1-7.9) 6.1 (5.1-6.6) 0.74

GLS (%) −18.9 (−16.0 to −20.5) −19.0 (−16.1 to −20.6) 0.96

Time to Peak GLS (ms) 263 (206-317) 253 (225-281) 0.96

GCS (%) −27.5 (−24.1 to −30.6) −27.7 (−24.9 to −30.1) 0.84

Time to Peak GCS (ms) 264 (208-315) 223 (216–316) 0.71

GRS (%) 33.9 (25.4-39.1) 39.1 (34.8-41.8) 0.80

Time to Peak GRS (ms) 275 (216–308) 223 (215-303) 0.36

Results are presented as median (25th–75th percentile)
GCS Global Circumferential Strain, GLS Global Longitudinal Strain, GRS Global Radial Strain
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Table 3 Hemodynamic and strain response to dobutamine

Patients Controls p

Rest 10 μg/Kg/min 20 μg/Kg/min Rest 10 μg/Kg/min 20 μg/Kg/min

Heart Rate (beats/min) 72 (58-78) 75 (63-84) 94 (75-111) 69 (51-72) 65 (53-91) 90 (72-118)

Δ Heart Rate (beats/min) 3 (−2-10) 3 (−5-14) 0.94

24 (5-34) 25 (18-42) 0.44

Stroke volume (ml) 92 (80-110) 95 (73-113) 93 (71-115) 117 (86-144)

Δ Stroke volume (ml) −1.0 (−15-18) 18 (4-29) 0.037

Cardiac Output (l/min) 6.5 (5.1-7.9) 9.2 (7.0-10.4) 6.1 (5.1-6.6) 9.4 (8.6-11.5)

Δ Cardiac Output (l/min) 2.2 (1.7-3.2) 3.8 (3.4-4.9) 0.015

Ejection Fraction (%)a 66 (60-69) 71 (65-74) 73 (70-76) 63 (61-67) 73 (72-76) 75 (73-79)

Δ Ejection Fraction (%) 4 (2-8) 10 (6-14) 0.006

8 (5-11) 11 (7-17) 0.08

GLS (%) −18.9 (−16.0 to −20.5) −19.7 (−15.9 to −22.4) −19.5 (−16.6 to –21.6) −19.0 (−16.1 to −20.6) −23.4 (−22.1 to –26.7) −21.8 (−19.9 to –23.6)

Δ GLS (%) −1.4 (1.0 to −3.1) −5.9 (−3.6 to −8.2) <0.001

−0.6 (1.0 to –3.0) −2.5 (−2.3 to −5.1) 0.018

GCS (%) −27.5 (−24.1 to −30.6) −31.2 (−25.6 to −35.7) −35.7 (−30.3 to −39.3) –27.7 (−24.9 to −30.1) −34.7 (−32.2 to −36.3) −36.1 (−34.8 to −37.3)

Δ GCS (%) −4.0 (−0.1 to −5.8) −8.3 (−2.6 to −10.5) 0.04

−7.6 (−3.7 to −11.0) −9.1 (−5.0 to −13.2) 0.48

GRS (%) 33.9 (25.4-39.1) 35.6 (28.9-41.8) 38.1 (29.7-43.1) 31.8 (28.5-40.0) 39.1 (34.8-41.8) 36.3 (33.9-41.4)

Δ GRS (%) 1.9 (−0.9-5.3) 4.2 (2.2-8.2) 0.10

4.2 (0.6-8.1) 3.1 (−0.2-9.3) 0.79

Results are presented as median (25th–75th percentile)
GLS global longitudinal strain, GCG global circumferential strain, GRS global radial strain, Δ absolute variation from baseline
aDerived from two long axis and one short axis
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Fig. 1 Strain and ejection fraction response to pharmacological stress. Percentual variation of strain parameters and ejection fraction with 10 μg/Kg/min
and 20 μg/Kg/min of dobutamine in patients and controls. GLS – global longitudinal strain; GCS – global circumferential strain; GRS – global radial strain;
EF – ejection fraction
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Fig. 2 Blunted response of strain to dobutamine. Representative example of the blunted response of longitudinal and circumferential strain to
dobutamine in a patient, as compared to a control. Values written in the diagrams correspond to peak strain (%) and time to peak strain
(ms), respectively
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Stress perfusion and late gadolinium enhancement
No perfusion abnormalities were detected in any subject
during adenosine stress. There was no LGE in patients
and controls.

Reproducibility
The mean differences and confidence intervals between
repeated strain measurements are displayed in Table 4.
Reproducibility was similar at rest and with dobuta-
mine stress. Variability was higher for GRS than for GLS
and GCS.

Discussion
Our results suggest that a dobutamine stress test can
be useful in revealing systolic abnormalities in patients
with mild cirrhosis. Using cardiovascular magnetic res-
onance derived strain, we have shown that, during low-
to intermediate dose dobutamine stimulation, patients
with cirrhosis had a smaller improvement in longitudinal
and a delayed increase in circumferential strain com-
pared to controls. This is, to the best of our knowledge,
the first study to evaluate myocardial deformation during
stress in cirrhosis.
Subendocardial fibre damage with consequent left ven-

tricular longitudinal function impairment are usually
the first manifestations of myocardial disease [22–24].
Longitudinal dysfunction was previously documented in
cirrhosis, at rest [5, 6], using echocardiography. In the
present study, we could not find differences in any CMR
parameters at rest between patients and controls. This
may be related to the early stage of disease of the ma-
jority of the patients. Patients exhibited a blunted re-
sponse of GLS to dobutamine, compared to controls.
The normal response of strain to dobutamine is an initial
increment followed by a plateau or decrement (when

filling is reduced by increased heart-rate) [25, 26]. Our
results are in line with this pattern in controls but not
in the patient group. This suggests that, while in con-
trols, the maximal inotropic effect of dobutamine is
achieved with the lower dose (the higher dose having
mainly a positive chronotropic effect), patients may also
have a delayed response of longitudinal strain to dobuta-
mine, with some strain still further developing at 20 μg/
kg/min. Several abnormalities in cardiomyocyte structure
and function - including decreased density and down-
regulation of beta-adrenergic receptors and impaired
intracellular signaling pathways - have been described in
animal models of cirrhosis [27, 28] and may account for
our findings.
Compared to controls, patients also had a smaller

increase of GCS with 10 μg/kg/min of dobutamine; the
response of GCS to 20 μg/kg/min did not differ between
the two groups. This also suggests a delayed response of
circumferential strain to inotropic stimuli in cirrhosis
with patients requiring higher doses of dobutamine (or
more time) to equalize with the controls. Ejection frac-
tion showed a similar behaviour: patients had a smaller
improvement at the dose of 10 μg/kg/min of dobutamine
but no differences were found between the groups at
20 μg/kg/min. The response of GRS to dobutamine was
not different in patients and controls; this is in line with
previous studies in ischemic heart disease patients, which
have reported radial strain to be the last component of
myocardial mechanics to be affected by ischemia [29].
Although previous studies have reported an abnor-

mal cardiac response to exercise or pharmacological
stress in cirrhotic patients using echocardiography and
SPECT [7, 30, 31], the role of dobutamine stress testing
in diagnosing cirrhotic cardiomyopathy is still a matter of
debate, since its ability to detect abnormalities – mainly

Table 4 Variability of different strain parameters at rest and during dobutamine stress

Intraobserver variability Interobserver variability

Parameter Mean difference (%) 95 % CI p Mean difference (%) 95 % CI p

Rest

GLS 0.17 −0.83-0.87 0.96 0.78 −0.57-2.13 0.23

GRS 0.92 −3.11-3.29 0.96 3,64 0.96-6.32 0.01

GCS 0.47 −0.21-1.15 0.24 0.39 −0.35-1.13 0.26

Dobutamine 10 μg/kg/min

GLS 0.49 −1.01-2.0 0.29 1.12 0-2.24 0.05

GRS 0.64 −3.01-4.29 0.68 3.77 0.20-7.35 0.04

GCS 0.45 −0.51-1.41 0.31 0.39 −0.49-1.27 0.34

Dobutamine 20 μg/kg/min

GLS 0.56 −0.53-1.66 0.17 0.77 −0.36-1.91 0.16

GRS 2.02 0.09-3.94 0.04 2.96 −0.70-6.63 0.10

GCS 0.39 −0.39-1.18 0.17 0.94 −0.34-2.22 0.13

GLS Global Longitudinal Strain, GRS Global Radial Strain, GCS Global Circumferential Strain
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changes in volumes and EF – has been inconsistent using
these imaging modalities [8, 9, 32]. The role of dobuta-
mine stress MRI in cirrhosis has not been previously
studied. Myocardial deformation analysis in this setting
has also never been reported, either with CMR or echo-
cardiography (probably because its feasibility under stress
with the latter may be limited). Unlike echo, CMR does
not depend on a good “acoustic window” for image
acquisition, and its feasibility in quantifying strain during
dobutamine stress has been demonstrated [15, 33]. Our
findings may explain previous negative results [9] since
preserved radial mechanics and a normal response of
circumferential strain to higher doses of dobutamine,
may contribute to a normal EF response during these
doses, despite the smaller longitudinal strain increase.
Cardiac output increased less significantly in patients

than in controls. This seems to be explained by the higher
increase in stroke volume found in controls, since heart
rate variation was similar in the two groups. We also
found a significant correlation between the dobutamine-
induced changes of GLS and stroke volume. According
to these observations, inotropic incompetence, which has
been reported as a feature of cirrhotic cardiomyopathy
may be at least partially explained by longitudinal myo-
cardial dysfunction. Our findings may be clinically rele-
vant since the inability to increase cardiac output under
stress conditions (such as infection or haemorrhage) may
play a role in the development of hepatorenal syndrome,
influencing mortality in patients with cirrhosis [11, 12].
Hence, patients exhibiting an abnormal inotropic response
under pharmacological stress may need a closer follow-up
and a more aggressive management of complications.
However, since other studies have failed to establish a rela-
tion between cardiac dysfunction and prognosis [34–36]
and we did not assess prognosis, this hypothesis re-
mains speculative, and warrants future research.
Resting hemodynamic conditions may influence ino-

tropic response to pharmacological stress, and our results
might have been related to differences in volemia (par-
ticularly in the presence of diuretics), or neuro-humoral
stimulation. However, only seven patients were on di-
uretics and we could not find any differences in inotropic
response between them and the other patients; we also
failed to find differences in cardiac chambers size, rest-
ing heart rate, blood pressure or cardiac output between
patients and controls. Taken altogether, these findings
argue against an effect of different basal hemodynamics
on our results.
Under adenosine stress, we did not detect ischemia,

which could have influenced inotropic response to dobu-
tamine, in any subject. Although a quantitative perfusion
analysis was not performed, our methodology has been
shown to be highly accurate in detecting functionally
significant coronary artery disease [17].

In contrast with a previous study [37], we did not find
LGE in any patient. The difference in disease severity be-
tween the two studies probably accounts for these find-
ings since myocardial fibrosis may only be detectable in
more advanced disease states as a result of the chronic
activation of the renin-angiotensin-aldosterone system.

Limitations
This is a single center study performed in patients
mainly with alcoholic cirrhosis and mild disease. Since
we have excluded patients that would not be able to
comply with the instructions or tolerate the breath
holding at rest our results may not be generalized to
all patients with cirrhosis. Furthermore, we cannot
exclude the occurrence of type two errors, due to the
small size of the control group.
We aimed to evaluate the contractile response to

dobutamine stress with the maximum extent of inotropic
response expected with doses of 10–20 μg/kg/min of
dobutamine [38]. However we cannot exclude that a full
test (40 μg/kg/min) would have potentially added valu-
able information despite the fact that we didn’t observe
significant perfusion defects with adenosine stress.
Due to time constraints, no full cine short axis stacks for

volumetric analysis were obtained during stress. Addition-
ally, it would have been interesting to evaluate diastolic
function, particularly under stress. Although diastolic strain
rate can be computed with feature tracking, the relatively
low temporal resolution of cine imaging (further reduced
at faster heart rates during stress), may limit its feasibility.
There is no widely accepted gold-standard method to

diagnose cirrhotic cardiomyopathy; on the other hand,
there are no well-established normal values of CMR-
derived strain parameters at rest and under pharma-
cological stress. Hence, the diagnostic accuracy of our
methodology cannot be objectively determined and de-
finitive cut-offs cannot be provided.
We could not perform a T1-mapping analysis, which

might have allowed us to detect the presence of diffuse
myocardial fibrosis.

Conclusions
Patients with cirrhosis show inotropic incompetence
to pharmacological stress, due to intrinsic myocardial
dysfunction.
CMR with myocardial deformation analysis may be a

sensitive diagnostic tool to identify abnormal inotropic
responses to stress already present at early disease
states, which may be difficult to detect with other non-
invasive imaging modalities. The significance of this
impaired response to pharmacological stress in cir-
rhotic cardiomyopathy and its prognostic implications
should be further explored in future prospective clin-
ical investigations.
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