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Abstract

Many of the structures and parameters that are detected, measured and reported in cardiovascular magnetic
resonance (CMR) have at least some properties that are fractal, meaning complex and self-similar at different scales.
To date however, there has been little use of fractal geometry in CMR; by comparison, many more applications of
fractal analysis have been published in MR imaging of the brain.
This review explains the fundamental principles of fractal geometry, places the fractal dimension into a meaningful
context within the realms of Euclidean and topological space, and defines its role in digital image processing. It
summarises the basic mathematics, highlights strengths and potential limitations of its application to biomedical
imaging, shows key current examples and suggests a simple route for its successful clinical implementation by the
CMR community.
By simplifying some of the more abstract concepts of deterministic fractals, this review invites CMR scientists
(clinicians, technologists, physicists) to experiment with fractal analysis as a means of developing the next
generation of intelligent quantitative cardiac imaging tools.
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Fractals-irregularity and complexity in nature
The earliest formal references to fractal geometry were
made by Leibniz [1] in the mid-1600s. Centuries later,
the first fractal prototype was abstractly introduced (only
in passing) by German mathematician Georg Cantor in
1883. But the word ‘fractal’ did not come into existence
until at least one century later. Inspired by the Latin
fractus, meaning “broken”, the term was first coined in
1975 by Benoit Mandelbrot [1] to describe complex pat-
terns that were self-similar across infinite scales. A frac-
tal object is defined as a rough, fragmented, or detailed
geometric shape that can be subdivided into parts, each
of which is a reduced copy or approximate copy of the
whole, where their self-similarity may be exact, quasi, or
statistical.
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Theoretical mathematical fractals are indeed infinitely
self-similar. We can generate limited practical graphical
representations of them by repeating a pattern at differ-
ent scales in a recursive or iterative loop or by recursion
of algebraic equations. Algebraic fractals typically require
thousands or millions of iterations before their fractal
nature is realised, and thus are usually visualised using
computer software. Not surprisingly, widespread appre-
ciation of fractal complexity developed only after the
advent of the computer in the 1980s and thanks to Man-
delbrot’s work [1].
Natural quasi fractal objects, unlike theoretical fractals

but much like graphical representations of fractals, are
scale invariant across only a limited range of scales. We
are surrounded by natural objects that iterate, branch or
spiral, spanning a wide range of scales. Some large-scale
examples in the physical world include recursing coast-
lines, branching tree and river networks, and spiralling
galaxies (Fig. 1a) and hurricanes. Some small-scale ex-
amples in biology include the spirals of a nautilus and
whorls of a seashell (Fig. 1b). Small-scale examples in
the human body include the lattices of cancellous bone
e is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12968-015-0179-0&domain=pdf
mailto:j.moon@ucl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Fig. 1 Exact self-similar elements cannot always be recognized in naturally occurring fractals. The spiral galaxy (a) is an example of a large-scale
fractal in the physical world. Biology is full of fractal objects: from the whorls of molluscs (b), to the woven lattice of human cancellous bone (c);
from the branching pulmonary arterial tree (d) to the trabeculated apex of the left ventricle (e). CMR = cardiovascular magnetic resonance
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(Fig. 1c), neuronal dendrites, tumor growth patterns,
and specifically for the cardiovascular system, branching
vascular networks (Fig. 1d), endocardial trabeculae, and
the quasi-fractal ordering of collagen and fibrosis in the
diseased myocardium as seen by micro-histology [2].
In cardiovascular magnetic resonance (CMR), much of

what we see, report, measure and compute in everyday
clinical practice also has some quasi-fractal property and is
amenable to description and quantification by fractal
mathematics, generating an index of their space-filling. To
date however, much more emphasis on Fourier analysis
and processing of CMR data has existed. Fractal analysis of
magnitude images is a more recent application—although
more than 100 [3–6] publications indexed in PubMed have
described fractal analysis in magnetic resonance imaging of
the brain, only 4 publications exist for CMR [7–10]. Sum-
ming up this biological complexity in medical images is
clinically important, to guide treatment decisions and im-
prove disease diagnosis, but attempting to do so using
traditional mathematics (perimeter estimates or area under
the curve) is unsatisfactory—it will tend to either oversim-
plify the motif ’s detail and/or vary with the iteration being
interrogated (Fig. 2). In general, the fractal approach is
ideal for measuring complicated image details that are be-
yond simple calliper measurement, and permits results
from different scanners to be meaningfully compared.
By summarising some of the fundamental principles

underpinning the science of deterministic fractals, and
by pointing to existing tools and approaches, this paper
invites CMR scientists to experiment with fractal ana-
lysis as a means of developing an alternative breed of
quantitative cardiac imaging tools.

How to measure
Geometrically a fractal would exist in between our more
familiar topological dimensions (DT): between the 1st
and 2nd DT, or between the 2nd and 3rd, etc. An under-
standing of the concept of fractal dimensionality begins
therefore with at least some understanding of DT and
Euclidean dimensionality (DE) (Fig. 3). Euclidean space
refers to an object’s embedding space and encompasses
dimensions that we define using Cartesian coordinates
(real numbers e.g., x, y and z). Figure 3 explains why
some objects will have DT =DE, while others will have
DT <DE. Unlike the topological and Euclidean dimen-
sions, the fractal dimension (FD) measures the detailed
self-similarity of fractals—the space-filling capacity of a
set of points embedded in space or its complexity. It is
related to DE and DT by Eq 1:

DT ≤ FD ≤ DE ð1Þ

These definitions also apply to fractal analysis in CMR.
The heart itself exists in three-dimensional (3D) space,
but diagnostic images provide 2D data a large part of the
time, from which we extract patterns. The pattern of a
drawn endocardial contour, for example on a left ven-
tricular short axis CMR cine slice, appears more com-
plicated than a simple curved line so its FD will be > 1.
Because it partly but not completely ‘fills’ 2D space how-
ever its FD will be < 2. Therefore the range of possible
FD s for a quasi-fractal object like the endocardial con-
tour extracted from a CMR sequence will be consistently
a value between 1 and 2.
The mathematical details of a fractal analysis are gener-

ally taken care of by software, but this is typically preceded
by some medical image preparation. It may be necessary
to generate the needed image format (e.g., grayscale, bin-
ary or red-green-blue (RGB) data type) or to remove
image complexity unrelated to the feature to be measured.
For example, a short-axis cine slice may carry signal ori-
ginating from the myocardium, blood-myocardial boun-
dary, blood pool, and surrounding tissues, all of which are
measurable, either separately or together. To be able to
measure the quasi-fractal properties of an endocardial
contour (the blood-myocardial boundary) some image



Fig. 2 a The first 3 iterations of the Koch coastline, an exact geometrical fractal. It can be quantified by its perimeter, its AUC or its FD. With each
successive iteration of the Koch coastline the original pattern is repeated at a finer level, corresponding to how with increasingly greater magnification
increasingly fine detail is revealed in fractals. By traditional methods, the AUC will converge on 8

5 and the perimeter of the curve after n iterations will

be 4
3

� �
n times the original perimeter (4 times more lines, 13 greater length per iteration), and since 4

3

�� �� > 1; perimeter will tend to infinity. These
exemplify the inherent problem with traditional mathematics: it is capable of providing only scale-dependent descriptors that give limited insight into
the motif’s overarching complexity. The FD of the Koch curve, on the other hand, summarises its complexity independently of scale. At every iteration

(from 1 to infinity) the FD is invariant at log4
log3 ≈1:26186. Biological quasi-fractals are measured by ‘sampling’ them with an imaging ‘camera’ relevant to a

particular imaging modality. Different cameras have different resolutions, but in all cases increasing resolution is similar to accumulating iterations on a
mathematical fractal. Natural quasi-fractals are self-similar across a finite number of scales only—a lower limit of representation is imposed by the limit
of the screen (pixel resolution). For CMR cines, blurring (quite extreme in b) has the same effect as setting a lower resolution for the particular sequence,
and this is equivalent to having fewer fractal iterations. With such manipulation, it can be seen that the area of the set changes little (here by 2 %), the
perimeter a lot (by 43 %) and the FD less (by 8 %). This implies that high image resolution (and a fractal approach) may not add much value when
attempting to measure the left ventricular volume; but image resolution (and a fractal approach) will make a considerable difference when intricate
features like trabeculae are the features of interest: the perimeter length or other 1D approach will be less robust than the FD. AUC = area under the
curve; d = length of segment; 1D = one-dimension/al; FD = fractal dimension; px = pixels. Other abbreviation as in Fig. 1
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transformation would be needed in order to extract its
relevant pattern, in particular its binary outline. In a seg-
mented image, derived according to a fixed thresholding
rule, the meaning of each single pixel is reduced to the
binary logic of existence (pixel present/foreground) and
nonexistence (pixel absent/background). Typically, the FD
of a binary filled object (e.g., the binary mask of the blood
pool) is greater than that of its binary outlined counterpart
(e.g., the edge image of the endocardial contour), and the
FD of such binary images (whether filled or outlined) will
be generally greater than the equivalent FD [11] of the ori-
ginal grayscale object (Fig. 4) [12].
Assuming the preprocessing approaches used (threshold,

subtract background, dilate, trace, find edges, binarise or
skeletonize, either automatically or manually) are appropri-
ate for the type of image [13, 14], then it is reasonable to
expect that the FD of the resultant region of interest (ROI)
will closely approximate the real FD of the aspect of the
physical object or process being investigated, at least over a
range of image resolutions, and that it will encode poten-
tially valuable biological information.
Once the ROI is extracted, the FD can be calculated

using many analysis methods (Table 1). Each will compute
a different type of FD but fundamentally they all measure
the same property of the ROI—they are all meters of
complexity. Even for a single method (e.g., box-counting)
multiple algorithmic variants may exist (box-counting
may use either a conventional, overlapping, folded or sym-
metric surface scanning approach [15]). The conventional
procedure for box-counting (Fig. 5) rests on simple arbi-
trary scaling and can be applied to structures lacking
strictly self-similar patterns. It works by systematically lay-
ing a series of grids of boxes of decreasing calibre onto the
ROI and counting (at each level) the number of boxes that



Fig. 3 A line, square or cube all exist in Euclidean space with a certain number of dimensions described classically by DE = 0 for a single point, 1
for a line (a), 2 for a plane (b) and 3 for a 3D object (d) [38]. The concept of topology is rooted in the idea of connectedness among points in a
set. The null (empty) set in topology (∅) has no points and its DT is by definition ‘-1’. A single point or a number of points makes up a ‘countable
set’. In topology, a set’s DT is always 1 integer value greater than the particular DT of the simplest form that can be used to ‘cut’ the set into two
parts [42]. A single point or a few points (provided they are not connected) are already separated, so it takes ‘nothing’ (∅) to separate them. Thus
the DT of a point is 0 (−1 + 1 = 0). A line (a) or an open curve can be severed by the removal of a point so it has DT = 1. A topological subset such as
b can have an interior, boundary and exterior. b has a closed boundary of points (like y). When its interior is empty, b is referred to as a boundary set.
Its interior may instead be full of points (like x) that are not boundary points because separating them from the exterior is a neighbourhood of other
points also contained in b. All points of the subset that are neither interior nor boundary will form the exterior of b. A line of DT = 1 is required to split
this topological set into 2 parts, therefore the DT of b = 2. Flat disks (c) have DT = 2 because they can be cut by a line with a DT = 1. A warped surface
can be cut by a curved open line (of DT = 1) so its DT = 2 although its DE = 3. Therefore, while lines and disks have DT =DE, warped surfaces have DT

one less than DE. DE = Euclidean dimension; DT = topological dimension
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overlies pixel detail. The FD is derived from the slope of
the logarithmic regression line graphing the relationship
of box count and scale. The number of data points used
to generate these log-log plots is related to the number of
measuring steps. Theoretically, given a priori knowledge
of the scaling rules, a mathematical fractal would generate
data points that lie along a perfect straight line. The point
of practical analysis, however, is to find the scaling rule in
the first place. For anisotropic biological objects (like left
ventricular endocardial contours) as well as for precisely
generated fractal images analysed without knowledge of
Fig. 4 The 3D FD (between 2 and 3) of the grayscale cine is computed using
information into account. In the standard box-counting method applied to b
lost as foreground pixels are contrasted from the background pixels to derive
only the mantissa, it is usually the case that the binary FD is greater than the
usually be nearer to 2 when compared to the FD of the equivalent binary out
Abbreviations as in Fig. 2
the scaling rule, the data points do not generally lie on a
straight line, reflecting sampling limitations as well as
limited self-similarity [16], thus the slope is estimated
from the regression line for the log-log plot. The choice of
image preparation routine and the details of the method
used to gather the data for fractal analysis are important
as they can either increase or decrease the correlation
coefficient of the double logarithmic plot (more linear or
more sigmoid fit respectively).
The FD is not the only tool available in fractal

geometry—others such as lacunarity also exist that
the differential box-counting algorithm that takes 3D pixel intensity
inary images as either outlines or filled silhouettes, intensity information is
the 2D FD (range 1 – 2). For the same original image and considering
grayscale equivalent. Furthermore, the FD of the filled binary mask would
line as the FD of the filled areas massively outweigh the FD of the edges.



Table 1 List of fractal dimensions that are most commonly used

Dimension Synonym Symbol Context Author, Year described

Fractal D Generic term first introduced by Mandelbrot Mandelbrot, 1983

Hausdorff
Hausdorff-Beisicovitch

DH Uses image coverage by a number of countable
spheres; widely used in pure mathematics but less
suitable for use with natural fractals

Hausdorff, 1919

Beisicovitch, 1935

Mandelbrot, 1983

Falconer, 1990

Gulick, 1992

Minkowski-Bouligand
Kolmogorov

DM Uses circle sweep like for DH; easier to evaluate than
DH; outputs usually greater than or equal to DH

Mandelbrot, 1983

Smith, 1989

Schroeder, 1991

Calliper
Perimeter-stepping, Divider,
Richardson,
Compass

DC Calculates the fractal complexity of a simple
continuous perimeter

Richardson, 1961

Mandelbrot, 1967/83

Falconer, 1990

Smith, 1989

Peitgen, 1992

Box-counting
Capacity

DB Uses a grid method to measure the fractal complexity
of 2D and 3D noncontiguous outlines commonly
encountered in biological structures

Mandelbrot, 1983

Falconer, 1990

Gulick, 1992

Peitgen, 1992

Mass-radius DMR Typically used in the context of clusters and networks;
can be applied to surfaces and biological objects

Caserta, 1990

Jelinek, 1998

Lyapunov DL Used for measuring the dimension of strange attractors
in time series analysis.

Gulick, 1992

Packing DP Uses dense packing by disjoint balls of differing small radii. Falconer, 1990

Local connected set DLC Variant of box-counting applied to binary images where
they are sampled pixel by pixel according to the local
connectedness of each pixel

Landini, 1995

Packing DP Uses dense packing by disjoint balls of differing small radii. Falconer, 1990

Grayscale box-counting
Differential box-counting
Fourier
Higuchi’s

DBC Does not require image segmentation; suitable for being
performed in an unsupervised manner and most amenable
to automation.

Sarkar, 1994

Azemin, 2011

Higuchi, 1988
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provide a different layer of information relating more to
the texture of objects [17]. Lacunarity (λ) mesures the size
distribution of gaps (lacunae) in an image, providing a
measure of heterogeneity [18]. It is the counterpart to the
FD but the two are non-identical (Fig. 6). If an image has
few, small, and regular gaps and is translationally and
rotationally invariant, it will have low λ; if it has many
large and irregular gaps with notable translational and ro-
tational variance, it will have high λ. The translational in-
variance (spatial heterogeneity [19]) that is measured by
lacunarity implies that: 1) λ is highly scale-dependent,
meaning an image that appears highly heterogenous at
low scale may appear much more homogenous at large
scale producing two very different values of λ; and 2) λ
(like the related box-counting fractal analysis) may be
used to study non-fractal objects. λ and the FD are usually
used complementarily, but for some biomedical applica-
tions lacunarity may be preferred (e.g., quantification of
trabecular bone by MR [20] where the widely varying
pattern of emptiness between spicules is the feature of
interest, Fig. 1c), and in others the FD is preferred (e.g.,
endocardial contours with large central emptiness and
edge detail, Fig. 5).

Previous use of fractal analysis in medicine
Fractal geometry has already found effective research ap-
plication in the medical imaging field across several mo-
dalities (such as plain radiography, retinal photography,
ultrasonography [21], computed tomography, MR and nu-
clear MR [22]). It has been used to study a wide variety of
processes: the complex geometries of biological cell types
[23]; tumor growth patterns [24]; gene expression [25];



Fig. 5 Applying fractal analysis to a 2D cine CMR slice (a) at the mid-left
ventricular level [9]. Trabecular detail is extracted by a region-based
level-set segmentation [40], followed by binarisation (b) and edge-
detection (c). Binarisation eliminates pixel detail originating from the
blood pool. The edge image is covered by a series of grids (d). The
total number of sized d boxes making up this exemplar grid is 16, and
the number of boxes N(d) required to completely cover the contour,
14 (2 boxes overlie blank space). For this set, box-counting will involve
the application of 86 grid sizes. The minimum size is set to 2 pixels.
The maximum size of the grid series is dictated by the dimensions of
the bounding box (discontinuous red line) where ‘bounding box’ refers
to the smallest rectangle that encloses the foreground pixels. The box
diameter for each successive grid is set to drop by d-1 pixels each time.
Through the implementation of this 2D box-counting approach, a
fractal output of between 1 and 2 is expected. The log-lot plot
(e) produces a good fit using linear regression and yields a gradient
equivalent to - FD (1.363). d = box dimension; Ln = natural logarithm;
N(d) = number of boxes. Other abbreviations as in Figs. 1 and 2
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retinopathy [26]; cellular differentiation in space and time
[27]; bone and dental matrix composition [24, 28]; brain
matter changes [29] etc. Fractal methods are popular and
convenient because they lend themselves to automated
computer-assisted image processing providing a precise
and quantitative metric. Robust measurement of biological
complexity in the medical imaging field is clinically im-
portant and worth pursuing because fractal indices have
been shown to permit early diagnosis of disease (in osteo-
porosis [20]), predict likelihood of malignancy (in medias-
tinal nodes imaged by endobronchial ultrasound [21]),
predict outcome (of lacunar strokes on the basis of retinal
vessel complexity [26]) and measure treatment response
(to radiochemotherapy in malignant head and neck tu-
mors [30]).

Utility in CMR
Pertinent to CMR, and for certain applications (e.g.,
myocardial trabecular quantification), there are clear ad-
vantages in using the FD: because it is less susceptible to
magnification, it works on different CMR sequences,
with different voxel sizes acquired on different plat-
forms; because it is independent of the size of the ROI,
it works for small as well as large hearts. There are also
potential limitations. For cine imaging, loss of image de-
tail is a particular concern due to partial volume effects
at the blood-myocardial boundary in the relatively ex-
tended through-plane voxel dimension. Left ventricular
cine stacks may be prone to variable spatial resolution
but we have previously shown how FD is robust to small
changes in slice thickness (6 mm vs. 7 mm vs. 8 mm
[10]). Future work should explore whether the higher
spatial resolution of computerised tomography provides
more suitable image data for fractal analysis than does
CMR, especially with respect to vascular trees and prob-
ably also myocardial trabeculae provided blood-myocardial
contrast is sufficient.



Fig. 6 It is possible to construct a family of fractals that share the same FD, but differ sharply in their overall texture so they have uncorrelated
values for λ —likewise two objects may have the same λ but very different FD. In a, two 2D binary sets are presented that share the same λ but
have different FD. For quantifying myocardial trabecular complexity in CMR cines, FD was chosen over λ for a number of reasons: 1) experiments on
grayscale short-axis imaging sequences showed λ was confounded by signal from the central blood pool; 2) as λ measures translational invariance
(imagine the binary edge-image rotated clockwise as per curved arrow in b), it is theoretically possible for a heavily but symmetrically trabeculated
heart (b, left image) to have a lower value for λ than one with fewer, more irregularly spaced trabeculae (b, right image). On the contrary, if there are
more trabeculae, whether regularly or irregularly spaced, FD will always be higher. As the sole objective of this tool was to quantify trabeculae, the
extra information on spatial heterogeneity encoded in λ could only have distracted from the biological signal of interest; 3) λ is a very scale-dependent
meter and potentially more susceptible to differences in image resolution across vendors and CMR centres compared to FD. λ = lacunarity. Other
abbreviations as in Figs. 2 and 3

Fig. 7 Clinical application of a fractal analysis for trabecular
quantification by CMR in LVNC. It is noteworthy how in healthy
hearts, it is the mid-LV that holds the greatest fractal complexity
(papillary muscles), a fact that is commonly overlooked as the more
intricately trabeculated apex commonly distracts. LVNC= left ventricular
noncompaction. Authorization for this adaptation has been obtained
both from the owner of the copyright in the original work [8] and from
the owner of copyright in the translation or adaptation (JCMR)
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Experimenting with fractal analysis of images in the
CMR domain, typically involves the in-house development
of scripts written for a specific programming environment
(e.g., MATLAB, ImageJ [31], Insight Toolkit [ITK] [32],
etc.). It may be possible to repurpose already available
tools in the form of commercial and open-source fractal
plugins and codes [33]. Examples include: Fractalyse
(ThèMA, F), Whinrhizo (Regent Instruments Inc.), Image
Pro Plus (Media Cybernetics), FDSURFFT (in MATLAB)
and Fraclac for ImageJ [34]. Our group started off with
Fraclac and then moved to an in-house MATLAB imple-
mentation. We applied fractal analysis to CMR cine data
for trabecular quantification. In left ventricular noncom-
paction (n = 30) compared to healthy volunteers (n = 75)
fractal analysis (Fig. 7) revealed FD elevation in the
apical half of the left ventricle [8] (1.392 ± 0.010 versus
1.235 ± 0.004). When we studied patients at our centre with
hypertrophic cardiomyopathy (n = 107), fractal analysis
showed abnormally increased apical FD not only in overt
disease, but also in sarcomere gene mutation carriers with-
out left ventricular hypertrophy (G + LVH-, 1.249 ± 0.07)
compared to controls (1.199 ± 0.05) [9]. In a multi-
centre setting high FD was further shown to predict
hypertrophic cardiomyopathy sarcomere gene mutation
carriage in G + LVH- (n = 73) [10]. Applied to 2547 partic-
ipants in the population-representative MESA study, frac-
tal analysis was able to provide ethnically-appropriate
normal reference ranges for left ventricular endocardial
complexity [35].
Whether to measure endocardial complexity or any

other imaging feature of interest, all novel CMR fractal
tests will invariably need to satisfy the usual STAndards
for the Reporting of Diagnostic accuracy studies (STARD)
[36]. To become useful clinical tools, they will need to
pass the 15 developmental “check-points” [37]. Table 2
underscores how two efforts in this field are still some
way off from clinical utility (e.g., the further developed of
the two is at step 11—development of normal reference
values).
Nonetheless, on the broader frontier, there is reason for

optimism with regard to developing useful CMR applica-
tions in the future. We think that potential, as yet untested
applications could include such things as textural analysis



Table 2 The 15 steps needed to turn a fractal tool in a clinically valid test (also considering STARD [39] criteria)

Developmental step Fractal quantification of trabecular complexity [9] Fractal quantification of the spatial
distribution of pulmonary flow [7]

1. Technical development and theoretical
basis of the test

Achieved – method first implemented in Java [8]
and then in MATLAB [9] to improve computational
efficiency; many segmentation algorithms tested
before choosing a region-based level-set
function [40]

Achieved – fractal dimension used as an index
of pulmonary perfusion heterogeneity; image
preparation included a coil inhomogeneity
correction

2. Comparison with gold-standard or
tissue biopsy (animal models and then
human biopsy material)

Achieved – validated against episcopic mouse embryo
datasets and using synthetically constructed
phantoms with well-known FD: 1) regular geometrical
objects (plane, cube surface, sphere surface) and 2)
ideal monofractal signals (4th, 5th and 6th iteration of
the Sierpinski carpet or 9th, 10th and 11th iteration of
the Sierpinski gasket)

Part achieved – validated using 3 MR reference
phantoms applied to each patient’s chest

3. Detection of changes in established
disease compared with normals

Achieved – FD in left ventricular noncompaction
compared to healthy volunteers

Not achieved

4. Correlation with other equivalent cardiac
imaging markers

Achieved – correlated with perimeter and with
noncompacted/compacted wall thickness ratio [41]

Achieved – comparison is made with relative
dispersion and the geometric standard deviation

5. Correlation with other relevant
biomarkers

Not achieved Achieved – data correlated with pulmonary
function test from spirometry and repeated for
three different inspired oxygen concentrations
(normoxia, hypoxia and hyperoxia)

6. Demonstration of the test in more than
one condition

Achieved – noncompaction and also subclinical
and overt hypertrophic cardiomyopathy (and
hypertension, in press)

Not achieved

7. Demonstration of test sensitivity (early
disease or change with age)

Achieved – in subclinical hypertrophic
cardiomyopathy

Not achieved

8. Demonstration of ability to track changes
over time

Not achieved Not achieved

9. Demonstration of predictive or
prognostic value of the test

Achieved – in combination with other CMR imaging
markers, high FD shown to predict sarcomere gene
mutation carriage in subclinical hypertrophic
cardiomyopathy

Not achieved

10. Standardization of the test
(reproducibility, different equipment,
in non-research settings, quality control,
limitations of test)

Achieved – intra- and inter-observer variability,
inter-scanner reproducibility, field-strength and
slice-thickness independence demonstrated;
community roll-out started through open-source
release of an OsiriX plugin and development of
an equivalent commercial version (in cvi42, Circle
Cardiovascular Imaging)

Not achieved

11. Development of robust age/ethnic
normal reference ranges

Achieved – through analysis of the Multi-Ethnic Study
of Atherosclerosis (in press); robust to multi-centre/
multi-vendor implementation

Not achieved

12. Changes in biomarker remain tied
to the disease after treatment

Not achieved Not achieved

13. Demonstration of test as surrogate
trial end point

Not achieved Not achieved

14. Clinical use and regulatory approval
of test

Not achieved Not achieved

15. Prove that test use improves clinical
outcome

Not achieved Not achieved

Not achieved marks a developmental milestone that has not yet been reached/published to our knowledge
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to quantify scar in late gadolinium enhancement images;
spatiotemporal analysis to track cardiac motion of cine ob-
jects; stochastic fractal models [38] to study nonperiodic
fluctuations in physiological parameters in MR flow data;
and fractal analysis in general to aid pattern recognition in
pixel-wise parametric mapping.
Conclusions
Although the description of modern fractal analysis by
Mandelbrot occurred more than 40 years ago and in spite
of clinical practice bringing us face to face with multi-
farious fractal features daily, the CMR community is only
beginning to evaluate potential applications of fractal
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analysis to cardiac imaging. This review reminds us of the
accessibility of fractal mathematics and methods and as-
pires to attract more cardiac imagers to the library of effi-
cient fractal analysis tools available, as well as invite them
to innovate. A deeper fractal exploration of the human
heart by CMR has the ability to teach us new facts relating
to cardiac function, haemodynamics and tissue character-
isation. With additional validation, software tools based
on fractal analysis may ultimately prove to have clinical
utility in the field of CMR.
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