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2D cine DENSE with low encoding
frequencies accurately quantifies cardiac
mechanics with improved image
characteristics
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Abstract

Background: Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the
magnetic resonance signal. The encoding frequency (ke) maps the measured phase to tissue displacement while
the strength of the encoding gradients affects image quality. 2D cine DENSE studies have used a ke of 0.10 cycles/
mm, which is high enough to remove an artifact-generating echo from k-space, provide high sensitivity to tissue
displacements, and dephase the blood pool. However, through-plane dephasing can remove the unwanted echo
and dephase the blood pool without relying on high ke. Additionally, the high sensitivity comes with the costs of
increased phase wrapping and intra-voxel dephasing. We hypothesized that ke below 0.10 cycles/mm can be used
to improve image characteristics and provide accurate measures of cardiac mechanics.

Methods: Spiral cine DENSE images were obtained for 10 healthy subjects and 10 patients with a history of heart
disease on a 3 T Siemens Trio. A mid-ventricular short-axis image was acquired with different ke: 0.02, 0.04, 0.06,
0.08, and 0.10 cycles/mm. Peak twist, circumferential strain, and radial strain were compared between acquisitions
employing different ke using Bland-Altman analyses and coefficients of variation. The percentage of wrapped pixels
in the phase images at end-systole was calculated for each ke. The dephasing of the blood signal and signal to
noise ratio (SNR) were also calculated and compared.

Results: Negligible differences were seen in strains and twist for all ke between 0.04 and 0.10 cycles/mm. These
differences were of the same magnitude as inter-test differences. Specifically, the acquisitions with 0.04 cycles/mm
accurately quantified cardiac mechanics and had zero phase wrapping. Compared to 0.10 cycles/mm, the
acquisitions with 0.04 cycles/mm had 9 % greater SNR and negligible differences in blood pool dephasing.

Conclusions: For 2D cine DENSE with through-plane dephasing, the encoding frequency can be lowered to
0.04 cycles/mm without compromising the quantification of twist or strain. The amount of wrapping can be
reduced with this lower value to greatly simplify the input to unwrapping algorithms. The strain and twist results
from studies using different encoding frequencies can be directly compared.
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Background
Displacement Encoding with Stimulated Echoes (DENSE)
is a cardiovascular magnetic resonance (CMR) technique
that encodes tissue displacement into the phase of the MR
signal [1]. The resulting pixel-level resolution of the dis-
placement field has been used to quantify cardiac mechan-
ics in both healthy and diseased animals and humans [1–6].
The encoding gradient strength is proportional to the
displacement sensitivity of the phase images. It is often
referred to as the encoding frequency (ke) with units of
cycles/mm.
In addition to specifying sensitivity, the ke plays a role in

several other processes related to image quality and post-
processing. The earliest implementations of DENSE relied
on a high ke to shift the artifact-generating echoes beyond
the sampled region of k-space [1] (Fig. 1, column 1).
While this technique removed stripe artifacts, the high en-
coding gradients caused significant intra-voxel dephasing
in deforming tissue, which limited the ability to properly
encode displacement during systole [1]. The incorporation
of complementary spatial modulation of magnetization
(CSPAMM) for echo suppression removed the first

artifact-generating echo (the T1 relaxation echo) [3] (Fig. 1,
column 2). This allowed for lower ke, and thus lower gra-
dients leading to less intra-voxel dephasing, since only the
furthest echo (the stimulated anti-echo) had to be shifted
out of the k-space field of view. Finally, the addition of a
thru-plane dephasing gradient selectively dephased the
stimulated anti-echo while preserving the desired stimu-
lated echo [7] (Fig. 1, column 4). This final addition re-
moved the dependence on high ke for artifact suppression.
A low ke is desired to improve the signal to noise ratio

(SNR) by reducing the amount of intra-voxel dephasing
and to prevent excessive wrapping in the phase images.
Recent studies with 2D DENSE have used an in-plane ke
of 0.10 cycles/mm, which creates wrapping in most sub-
jects as only 5 mm of displacement is required before
wrapping occurs [5, 8, 9]. Unwrapping algorithms have
been developed and utilized, but they are not guaranteed
to be error-free in all subjects or all regions of a given
subject’s heart [10]. Regions with high velocities and
noise are the most challenging for automated and semi-
automated techniques. Importantly, DENSE studies that
use the balanced encoding strategy and online image
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Fig. 1 The effect of encoding frequency (ke) and artifact suppression techniques on the DENSE k-space. These simulations of the DENSE k-space
illustrate the effect of ke and artifact suppression techniques. Consider the first k-space in column 1. The echo at the center of k-space is the
desired stimulated echo (S). The echo to its right is the T1 relaxation echo (T). The third echo is the stimulated anti-echo (A). Stripe artifacts are
generated by the T1 echo and the anti-echo. With no echo suppression technique, a high ke must be used to shift both artifact-generating
echoes beyond the sampled region of k-space (column 1). With CSPAMM echo suppression, the T1 echo is suppressed (column 2). Through-plane
dephasing selectively dephases the anti-echo and the T1 echo (column 3). The use of CSPAMM and through-plane dephasing together suppresses
both artifact-generating echoes, which removes the dependence on high ke for artifact suppression (column 4)
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reconstruction suffer from up to three-fold increased
phase wrapping [11] that may not be correctly resolved
by the unwrapping algorithm, particularly in the pres-
ence of noise. Indeed, lower ke (0.06 cycles/mm) have
been used in these studies to reduce the amount of
wrapping and simplify the input to unwrapping algo-
rithms [11–13]. No direct comparisons with higher ke
have been performed to validate this approach.
Very low ke may be undesirable due to low sensitivity to

displacement [10, 11]. If the sensitivity is too low, there
may be errors in the quantifications of cardiac mechanics.
While this may be problematic as the ke approaches zero,
a relatively low ke of 0.04 cycles/mm is still able to resolve
displacements of 0.006 mm with typical 12-bit data stor-
age. More importantly, though, the sensitivity of the dis-
placement measurements to phase noise increases with
decreasing ke. No study has investigated a range of ke to
ascertain its effects on quantifications of cardiac mechan-
ics. It has also been suggested that a high ke is required to
dephase the blood pool signal [10]. This may not be the
case, however, as long as a through-plane dephasing gradi-
ent is in place to accomplish the dephasing.
We hypothesized that 1) quantifications of myocardial

circumferential strain, radial strain, and twist will not be
different for encoding frequencies between 0.02 and
0.10 cycles/mm, 2) the nulling of the blood signal will be
similar for all encoding frequencies, 3) the use of lower en-
coding frequencies will prevent phase wrapping even in
healthy subjects with substantial cardiac motion, and 4)
lower encoding frequencies will have higher SNR. We
tested these hypotheses using a spiral cine DENSE proto-
col implemented on a 3 T Siemens Tim Trio MRI scanner.

Methods
Image acquisition
This protocol was approved by the local Institutional
Review Board of the University of Kentucky. Ten healthy
subjects (50 % female, age 27 ± 9) with no history of car-
diovascular disease and ten subjects with a history of myo-
cardial infarction or congestive heart failure (40 % female,
age 57 ± 6) consented for the study. A 3 T Siemens (Er-
langen, Germany) Tim Trio with a 6-element chest and
24-element spine coil was used to acquire mid-ventricular
short-axis 2D cine DENSE images with the following pa-
rameters: 6 spiral interleaves, 1 average, 360 × 360 mm2

field of view, 128 × 128 reconstruction matrix, 2.8 ×
2.8 mm2 pixel size, 8 mm slice thickness, 1.08 ms/17 ms
TE/TR, constant 20° flip angle. Two spirals were acquired
per heartbeat which yielded a temporal resolution of
34 ms. View sharing was used to achieve 17 ms between
reconstructed cardiac frames. Simple encoding was used
to measure in-plane displacements while through-plane
dephasing of 0.08 cycles/mm and CSPAMM were used
for echo suppression [3, 7, 11]. To remove effects due to

variable breath-hold position, the acquisitions were per-
formed with respiratory navigator gating and an accept-
ance window of ±3 mm.
In each subject, the same mid-ventricular short-axis

slice was acquired five times with different values of in-
plane ke: 0.02, 0.04, 0.06, 0.08, and 0.10 cycles/mm. The
0.10 cycles/mm acquisition was repeated during the
same imaging session to assess inter-test reproducibility.

DENSE strain and twist analyses
Myocardial strain and twist were derived from the DENSE
images using custom software written in MATLAB (The
Mathworks Inc, Natick, MA). The post-processing steps
for each cine DENSE slice included manual segmentation
of the left ventricular myocardium and semi-automated
phase unwrapping to obtain the 2D Eulerian displace-
ments within each cardiac frame [10]. Following the un-
wrapping, spatial smoothing and temporal fitting of
displacements (10th order polynomial) were performed to
obtain smooth trajectories for all tissue points beginning
at end-diastole and continuing through systole into much
of diastole [10]. Radial strain, circumferential strain, and
twist were calculated from the resulting displacement
fields for each cardiac frame [14].
Radial and circumferential strains were quantified with

the 2D Lagrangian finite strain tensor in six circumferential
segments throughout the cardiac cycle. Radial strain was
defined as positive for thickening while circumferential
strain was negative for shortening. To report peak global
strains, the curves from the six segments were averaged
into a single global curve from which the peak was se-
lected. Twist was quantified in the same segments and was
defined as the angle of rotation about the centroid of the
endocardial contour at end-diastole. Twist was positive for
counterclockwise rotation when viewing the short-axis
slice from the apex towards the base. Peak global twist was
quantified in the same manner as the peak global strains.
As many recent studies have used a ke of 0.10 cycles/mm,

the peak strains and twists quantified with the other ke
were compared to the same measures quantified with a ke
of 0.10 cycles/mm. Paired t-tests (with significance defined
as p < 0.05), Bland-Altman analyses [15], and modified
coefficients of variation (CoV) were used for statistical
comparison. The equation for CoV is below for a given
measurement, X, quantified in N subjects with two encod-
ing frequencies (ke1 and ke2) [6, 16].

CoV ¼
XN

i¼1
St:Dev: Xke1 Xke2ð Þi
� �

=NXN

i¼1
Xke1 þ Xke2ð Þ=2ð Þi

� �
=N

��� ���
Phase wrapping
The amount of phase wrapping that occurred for a given
subject and ke was measured by first considering the
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phase images for the X and Y directions separately. For
each of the two directions, the cardiac frame with the
largest percentage of wrapped pixels within the cardiac
segmentation was found. The cardiac frame with this
largest percentage may have been at slightly different
time points for the two directions, though always near
end-systole because that is when the most displacement
and wrapping occurred. The average of those two per-
centages was taken as the amount of phase wrapping for
that subject and ke.

Blood pool dephasing
Dephasing of the blood signal through the cardiac cycle
for each ke was quantified by calculating the average
pixel intensity of the DENSE magnitude images within a
set of manually defined contours that denoted the blood
pool. Care was taken to ensure that the papillary mus-
cles and trabeculations were not included within the
blood pool for this analysis. The magnitude of the blood
pool signal was quantified and expressed through the
cardiac cycle as a percentage of its signal in the first car-
diac phase. To demonstrate the amount of dephasing
that has occurred by early systole, the blood pool signal
remaining at the fifth cardiac frame (85 ms into the car-
diac cycle) was compared between the acquisitions with
different ke

Signal to noise ratio
To compare the effects of intra-voxel dephasing between
the different ke, the signal to noise ratio (SNR) was cal-
culated for each cardiac phase. The end-systolic SNR for
each lower ke was compared to the SNR for ke of 0.10 cy-
cles/mm with a paired t-test. SNR was calculated from
the magnitude images by finding the average signal
within the myocardium and the standard deviation
(noise) of signal within a region of zero signal outside of
the body. Care was taken to avoid image artifacts in the
region of zero signal. Corrections were applied for the
Rician distribution of the MR signal [17]. The true
standard deviation of the signal, σ, was calculated from
the measured standard deviation, σM, by

σ ¼
ffiffiffiffiffiffiffiffiffi
2

4−π

r
� σM ≈ 1:526 � σM

The true myocardial signal, S, was calculated from the
measured myocardial signal, M, by

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−σ2

p

SNR was calculated as the ratio of S to σ.

Relationship between phase noise and SNR
To assess the relationship between phase noise and SNR,
the same DENSE acquisitions above were performed on a

stationary water phantom. SNR was quantified in the
same manner as for the human studies. For each ke, the
phase noise in the X and Y phase images was quantified
via the root mean squared error (RMSE) in radians. To
compute the RMSE of the 2D displacements, the previous
RMSEs were converted from radians to millimeters via
the ke. The X and Y RMSEs in millimeters were then
added together via vector addition to yield the 2D RMSE.
The phase noise in radians is theoretically inversely pro-
portional to the SNR [17].

Results
As quantified by the DENSE acquisition with a ke of
0.10 cycles/mm, the patients had a mean (± standard
deviation) global circumferential strain of −12 ± 6 %
(range: −3 to −20 %). The same measure in the healthy
subjects was −20 ± 2 % (range: −17 to −23 %).
End-systolic images from a representative subject are

shown in Fig. 2 and demonstrate a reduction in phase
wrapping at lower ke. No phase wrapping was present
within the segmentation of the myocardium for ke of
0.04 and 0.02 cycles/mm.

DENSE strain and twist analyses
Negligible differences were seen in strains and twist for all
ke between 0.04 and 0.10 cycles/mm (Fig. 3, Table 1).
These differences were of the same magnitude as inter-
test differences. The comparison between ke of 0.02 and
0.10 cycles/mm, however, demonstrated larger biases, lar-
ger 95 % limits of agreement (LoA), and larger CoVs for
both strains and twist. The differences in circumferential
strain and twist between ke of 0.02 and 0.10 cycles/mm
were significant (p = <0.01 and p = 0.04, respectively).

Phase wrapping
For ke of 0.02, 0.04, 0.06, 0.08, and 0.10 cycles/mm, the
largest percentage of wrapped pixels in the phase images
was 0 ± 0, 0 ± 0, 5 ± 6, 17 ± 10, and 32 ± 9 %, respectively.
Thus, phase images acquired with a ke of 0.04 cycles/
mm had zero wrapped pixels. In contrast, the same
phase images acquired with a ke of 0.10 cycles/mm had
about 32 % of the pixels wrapped in the cardiac frame
with the most displacement.

Blood pool dephasing
As ke increased, the rate of blood pool dephasing in-
creased, however, the standard deviations demonstrated
considerable overlap among the different ke (Fig. 4).
Across the 20 subjects and using the fifth cardiac phase
as an example, the amount of blood pool signal
remaining as a percentage of its initial value was 28 ± 11,
26 ± 10, 24 ± 9, 23 ± 8, and 21 ± 7 % for ke of 0.02, 0.04,
0.06, 0.08, and 0.10 cycles/mm, respectively. Frame 20
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was the average end-systolic frame and there was no ef-
fective difference in blood pool dephasing by that time.

Signal to noise ratio
SNR throughout the cardiac cycle was similar for the dif-
ferent ke (Fig. 5), with a trend towards higher SNR at
lower ke. Across the 20 subjects, the mean SNR at end-
systole, which occurred at different cardiac frames for the
different subjects, was 23 ± 9, 24 ± 9, 23 ± 9, 23 ± 10, and
22 ± 9 for ke of 0.02, 0.04, 0.06, 0.08, and 0.10 cycles/mm,
respectively. The end-systolic SNR for ke = 0.02, 0.04, 0.06,
and 0.08 were each significantly different than the end-
systolic SNR for ke = 0.10 cycles/mm (p = 0.010, 0.003,

0.005, 0.03, respectively). This represents a 9 % increase in
SNR for ke of 0.04 cycles/mm compared to a ke of 0.10 -
cycles/mm.

Relationship between phase noise and SNR
In the stationary water phantom, the inverse relationship
between the phase noise (as measured by RMSE in radians)
and the SNR was similar for all ke (Fig. 6a). However, the
RMSE in millimeters, which required division by the ap-
propriate ke, was substantially higher for lower ke (Fig. 6b).
For example, for SNR near 20, the RMSEs in millimeters
were 1.17, 0.60, 0.38, 0.30, and 0.23 mm, for ke = 0.02, 0.04,
0.06, 0.08, and 0.10 cycles/mm, respectively.

Magnitude X-Phase Y-Phase

0.10

0.08

0.06

0.04

0.02

ke

Fig. 2 End-systolic magnitude and phase images from a subject with previous myocardial infarction. Substantial wrapping was present in the
phase images for the higher ke. As the ke was decreased, the amount of wrapping in the X and Y phase images decreased. No wrapping was
present in the myocardium for 0.02 and 0.04 cycles/mm. Also note that the blood pool dephased similarly for all ke
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Discussion
Spiral 2D cine DENSE has typically been acquired with
a ke of 0.10 cycles/mm [5, 8, 9]. This value is high
enough to cause phase wrapping after only 5 mm of tis-
sue displacement. In the present study, we investigated
the hypothesis that lower ke could be used to reduce
the amount of phase wrapping without compromising
the quantification of strain and twist from mid-
ventricular short-axis images. Our primary findings in-
cluded: 1) the ke can be reduced to 0.04 cycles/mm

without causing differences in the quantifications of cir-
cumferential strain, radial strain, or twist; 2) phase
wrapping can be eliminated from the phase images with
the use of ke less than or equal to 0.04 cycles/mm; 3)
the rate of blood pool dephasing, which is a source of
contrast between blood and myocardium in the magni-
tude images, is similar for ke between 0.02 and 0.10 cy-
cles/mm; and 4) the SNR at end-systole is 9 % higher
when using a ke of 0.04 cycles/mm compared to using a
ke of 0.10 cycles/mm.
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Fig. 3 Bland-Altman plots demonstrate agreement among ke of at least 0.04 cycles/mm. The first, second, and third rows contain Bland-Altman
plots for circumferential strain (Ecc), radial strain (Err), and twist (θ), respectively. The subscript values denote the comparisons between acquisitions
with the stated ke. The inter-test comparison was between two acquisitions with ke of 0.10 cycles/mm. The shaded areas denote the region within the
95 % limits of agreement. The worst agreement was seen between 0.02 and 0.10 cycles/mm
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DENSE strain and twist analyses
Spiral cine DENSE is primarily used to measure cardiac
displacements and deformation in the forms of twist and
strain [3, 10, 12]. The ke is the proportionality constant
between the tissue displacement in millimeters and the
measured signal phase. It also determines the strength of
the encoding gradient that is applied. A high value of ke
provides high sensitivity to small displacements, but at
the cost of intra-voxel dephasing and increased phase
wrapping. The results from this study suggest that the ke
can be lowered to 0.04 cycles/mm, which significantly
reduces the presence of phase wrapping, without com-
promising measures of circumferential strain, radial
strain, or twist. In addition, studies that use different ke
between 0.04 and 0.10 cycles/mm can be directly com-
pared as no systematic differences in strain or twist due
to differences in ke were found. This is valuable as not
all DENSE studies have used the typical value of

0.10 cycles/mm. In particular, some previous studies
have used 0.06 cycles/mm [12, 13], which is within the
range of this study.
The measures of strain and twist were compromised

as the ke was lowered to 0.02 cycles/mm (Fig. 3). This
was likely caused by the increased effect of phase errors
at low ke (Fig. 6b). For a given phase error in radians,
the corresponding error in displacement (mm) was lar-
ger for lower ke. This same phenomenon is present in
phase contrast velocity imaging as the velocity encoding
(VENC) is increased [18].

Phase wrapping
The amount of phase wrapping decreased as the ke was
decreased. Lowering the ke to the point that there is no
wrapping puts DENSE on a similar level as phase con-
trast velocity imaging, where the VENC is commonly ad-
justed to prevent wrapping in the blood velocities [19].

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Cardiac Frame

B
lo

od
 P

oo
l S

ig
na

l I
nt

en
si

ty
 (

%
)

k
e
 = 0.02

k
e
 = 0.04

k
e
 = 0.06

k
e
 = 0.08

k
e
 = 0.10

Fig. 4 Similar rates of blood pool dephasing were observed for the different ke. Blood pool signal intensity was expressed as a percentage of its
value at the first cardiac phase. The first 20 cardiac frames are shown. Each curve represents the average of the 20 subjects with standard
deviation error bars. As the ke increased, the rate of blood pool dephasing increased, but with considerable overlap between the different ke as
seen by the wide standard deviation bars

Table 1 Summary statistics showed good agreement for all ke between 0.04 and 0.10 cycles/mm. Larger biases, 95 % LoA, and CoVs
were observed for ke of 0.02 cycles/mm

E(ke)** Circumferential Strain (%) Radial Strain (%) Twist (Degrees)

Bias 95 % LoA Mean CoV p-value Bias 95 % LoA Mean CoV p-value Bias 95 % LoA Mean CoV p-value

E0.10 – E0.02 −1.9 ±5.0 11 % <0.01* 3.9 ±20.4 23 % 0.11 −0.48 ±1.92 14 % 0.04*

E0.10 – E0.04 −0.6 ±3.6 6 % 0.15 −0.0 ±15.9 14 % 1.00 −0.14 ±1.22 8 % 0.32

E0.10 – E0.06 0.0 ±3.2 6 % 0.91 0.8 ±12.8 13 % 0.59 −0.22 ±0.93 6 % 0.05

E0.10 – E0.08 0.1 ±2.6 4 % 0.67 −0.5 ±10.9 11 % 0.67 −0.13 ±0.77 5 % 0.16

Inter-test 0.1 ±2.0 4 % 0.53 0.9 ±13.0 12 % 0.54 −0.05 ±0.87 5 % 0.59

*Statistical significance between peak measures of mechanics using paired-sample t-test at significance level α = 0.05
**E ke½ � represents peak strain or twist measured using a particular ke
Abbreviations: LoA limits of agreement, CoV coefficient of variation
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The use of this low value was possible due to the artifact
suppression techniques of CSPAMM [3] and through-
plane dephasing [7]. As seen in the representative
subject (Fig. 2), no stripe artifacts were present in the
images for the low ke.

Blood pool dephasing
The rate of blood pool dephasing decreased as the ke
was decreased (Fig. 4). However, the difference between
the acquisitions with 0.10 and 0.02 cycles/mm was not
large. By the fifth cardiac frame, the acquisition with
0.02 cycles/mm had approximately 7 % more of its blood

pool signal remaining. This difference was not practically
significant as the delineation between the myocardium
and the blood pool was still possible at the lowest ke.
The drop in blood pool signal through the cardiac cycle
is due to dephasing [10]. This dephasing can be due to
both in-plane and through-plane gradients. While the
in-plane gradients necessarily changed with the ke, the
through-plane gradient remained constant for all acqui-
sitions and likely contributed to the blood pool dephas-
ing at similar rates for all ke. Thus, the advent of
through-plane dephasing removed dependence on high
ke to accomplish blood pool dephasing.
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Signal to noise ratio
The SNR was 9 % higher for ke of 0.04 cycles/mm com-
pared to 0.10 cycles/mm. This is a reflection of the de-
creased intra-voxel dephasing that occurs due to the
decreased gradient strengths that accompany lower ke.
This modest increase in SNR is generally beneficial and
results in a reduction in phase noise [17].
It is important to note that both the in-plane encoding

gradient and the through-plane dephasing gradient are
capable of producing intra-voxel dephasing of the stimu-
lated echo in deforming tissue [7]. The voxel size in the
through-plane direction was larger than the in-plane dir-
ection (8 mm vs. 2.8 mm). Thus, the amount of intra-
voxel dephasing may have been largely controlled by the
through-plane dephasing gradient, which was constant
(0.08 cycles/mm) for all acquisitions in this study. Fur-
ther increases in SNR could be possible by reducing the
through-plane dephasing gradient, however, this value
was chosen to cause more than one half cycle of dephas-
ing across the 8 mm slice [7]. Reducing the amount of
through-plane dephasing could lead to the presence of
stripe artifacts in the images.

Limitations
This study assessed a single mid-ventricular short-axis
slice without consideration of long-axis images. The lon-
gitudinal motion of the left ventricle (particularly near
the base) is often larger than the circumferential and ra-
dial components [20]. Long-axis images would likely
have demonstrated phase wrapping with a ke of 0.04 -
cycles/mm. While this implies that unwrapping algo-
rithms cannot be removed from the post-processing, the
amount of wrapping can be substantially reduced with a
lower value. As the circumferential and radial strains
were not compromised in the short-axis images with this
low value, the longitudinal strains from the long-axis im-
ages should also not be compromised.
The acquisitions in this study were performed at 3 T,

which yields higher SNR compared to 1.5 T [21]. Acqui-
sitions at 1.5 T may have larger phase errors (due to de-
creased SNR) than those present in this study. However,
those errors could be offset by better field homogeneity
at the lower field strength. It has recently been reported
that the displacement errors from spiral cine DENSE are
the same at 3 T and 1.5 T [16]. Thus, the results from
this study are likely applicable to 1.5 T.
We performed the acquisitions in this study with the

simple encoding strategy because of the reported ability
to handle phase wrapping due to ke as high as 0.10 cy-
cles/mm [10]. A motivation for this study, however, was
to investigate the ability to lower the ke during acquisi-
tions that use the balanced encoding strategy. This strat-
egy has been used for DENSE acquisitions that encode
displacements in all three directions [11–13]. However,

in those studies, the ke was reduced to 0.06 cycles/mm
due to the increased wrapping that is present in the on-
line reconstructed images [11]. We could not guarantee
successful unwrapping from images acquired with the
balanced strategy and a ke of 0.10 cycles/mm, so the
simple strategy was used to be able to accurately test up
to 0.10 cycles/mm. The results from this study suggest
that the ke could likely be lowered to 0.04 cycles/mm
with the balanced strategy, which has better noise per-
formance than the simple encoding strategy [11]. This
lower value would reduce the load on the unwrapping
algorithm for 3D DENSE studies and any DENSE studies
that use the balanced encoding strategy. The strain and
twist results from this study suggest that these measures
of cardiac mechanics would not be compromised with
the lower value.

Conclusions
Cine DENSE is typically acquired with an encoding fre-
quency of 0.10 cycles/mm [5, 8, 9]. This value allows for
high sensitivity to tissue displacements, but at the cost of
substantial phase wrapping. We demonstrated that the en-
coding frequency can be lowered to 0.04 cycles/mm to
nearly eliminate phase wrapping without compromising
the quantification of cardiac strains or twist. Future stud-
ies may take advantage of this lower value to reduce the
amount of wrapping and simplify the input to unwrapping
algorithms. In addition, studies performed with different
encoding frequencies between 0.04 and 0.10 cycles/mm
can be directly compared as there is no systematic bias.
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