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Abstract

Background: UK Biobank’s ambitious aim is to perform cardiovascular magnetic resonance (CMR) in 100,000
people previously recruited into this prospective cohort study of half a million 40-69 year-olds.

Methods/design: We describe the CMR protocol applied in UK Biobank’s pilot phase, which will be extended into the
main phase with three centres using the same equipment and protocols. The CMR protocol includes white blood CMR
(sagittal anatomy, coronary and transverse anatomy), cine CMR (long axis cines, short axis cines of the ventricles,
coronal LVOT cine), strain CMR (tagging), flow CMR (aortic valve flow) and parametric CMR (native T1 map).

Discussion: This report will serve as a reference to researchers intending to use the UK Biobank resource or to replicate
the UK Biobank cardiovascular magnetic resonance protocol in different settings.

Background
Understanding the determinants of diseases, such as
myocardial infarction and stroke, is critical to advance
medical knowledge that can lead to prolongation of life
and improvement in quality of life. A combination of
various risk factors often leads to disease with each risk
factor having only moderate effects that also interact
with each other in complex ways. Prospective cohort
studies allow insights into risk factors before disease de-
velops or into how disease management affects
participants.

Methods/Design
UK Biobank, a prospective cohort study of half a million
40-69 year-olds (mean age 56.5 years, 54.4 % female,
94.4 % White, 1.9 % Asian/Asian British, 1.6 % Black/
Black British), started to recall participants for a com-
prehensive imaging visit. Baseline summary characteris-
tics of the cohort can be viewed in the data showcase on
UK Biobank’s Web site (www.ukbiobank.ac.uk).

The imaging visit includes a 35-min brain magnetic res-
onance imaging (MRI) scan at 3 Tesla, a dual energy X
-ray absorptiometry (DEXA) scan (10–15 min), and ca-
rotid ultrasound (10–15 min) in addition to preparation
(including consenting) and collection of non-imaging data
and biological samples (e.g. partial repeat of the baseline
assessment visit with supplementary cognitive function
tests), and 20-min cardiovascular magnetic resonance
(CMR) at 1.5 Tesla and 10-min abdominal MRI also at 1.5
Tesla (average time over 3 month period was 30 min for
both parts combined at 1.5 T Tesla). This resulted in an
average total visit time of 3 h 29 mins.
The rationale, challenges and approaches to perform

100,000 CMR scans in UK Biobank have been described
elsewhere [1]. The pilot phase is almost completed with
more than 7300 participants as of early January 2016
(see the current subject counter displayed on www.uk-
biobank.ac.uk). A first release of these imaging (with as-
sociated phenotypic) data occurred in October 2015.
The purpose of this article is to describe the details of

the relevant methodology for CMR acquisition during
the first 20 months of the pilot phase, which started in
May 2015. This article aims to serve researchers as a
source of information for planning access applications
(www.ukbiobank.ac.uk/register-apply/) to this shared
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resource and to serve as a reference for publications
arising from the use of UK Biobank CMR data.
The CMR protocol was developed bearing in mind the

set-up and requirements described previously [1]. In
brief, each participant undergoes a 20-min CMR protocol
without pharmacological stressor or contrast agent, as part
of a 30- min combined CMR and abdominal MRI protocol.

Cardiovascular magnetic resonance infrastructure
CMR imaging is being performed in Cheadle, United
Kingdom, on a clinical wide bore 1.5 Tesla scanner
(MAGNETOM Aera, Syngo Platform VD13A, Siemens
Healthcare, Erlangen, Germany). The scanner is
equipped with 48 receiver channels, a 45 mT/m and
200 T/m/s gradient system, an 18 channels anterior
body surface coil used in combination with a 12 ele-
ments of an integrated 32 element spine coil and elec-
trocardiogram (ECG) gating for cardiac synchronization.
In addition to the vendor’s advanced cardiac package,

the Shortened Modified Look-Locker Inversion recovery
technique (ShMOLLI, WIP780B) is implemented on the
scanner in order to perform native (non-contrast) myo-
cardial T1 mapping. The Cardiac Dot Engine (Siemens
Healthcare, Erlangen, Germany) is used to facilitate quality
for consistency of image acquisition throughout the study.

CMR protocol
UK Biobank’s CMR acquisitions include piloting and sa-
gittal, transverse and coronal partial coverage of the
chest and abdomen. For cardiac function, three long axis
cines (horizontal long axis – HLA, vertical long axis –
VLA, and left ventricular outflow tract –LVOT cines
both sagittal and coronal) and a complete short axis
(SA) stack of balanced steady state free precession
(bSSFP) cines, covering the left ventricle (LV) and right
ventricle (RV) are acquired (Fig. 1). Aortic compliance
can be derived from a transverse bSSFP cine at the level

of the pulmonary trunk and right pulmonary artery
(Fig. 2). Immediately before and after this bSSFP acquisi-
tion of the aorta, brachial blood pressure readings are
being obtained using a manual sphygmomanometer used
for calibrating peripheral waveforms and immediately
afterwards a brachial pressure wave trace is digitally
computed by the Vicorder (Skidmore Medical, Bristol,
UK) with the cuff statically inflated to 70 mmHg using a
volume displacement technique. The Vicorder software
calculates values for central blood pressure by applying a
previously described brachial-to-aortic transfer function
[2]. Aortic distensibility represents the relative change in
area of the aorta per unit pressure, taken here as the
central pulse pressure and is calculated according to the
formula:

aortic distensibility ¼ Amax‐Aminð Þ=Amin= Pmax‐Pminð Þ;

where Amax = maximal (systolic) area (mm2), Amin = min-
imal (diastolic) area (mm2), Pmax = systolic blood pres-
sure (mm Hg), and Pmin = diastolic blood pressure (mm
Hg) [3].
A phase contrast sequence is planned on both sagittal

and coronal LVOT cines to capture aortic flow and the
number of valve cusps (Fig. 3). The plane is located at or
immediately above the sino-tubular junction at end dia-
stole as recommended [4]. The standard velocity encod-
ing (VENC) is 2 m/s but is adjusted upwards based on
presence/degree of turbulence seen on the LVOT cines
and if time allows. Tagging (grid) is acquired in 3 short
axis views (basal, midventricular and apical) carefully
avoiding the LVOT in the basal slice. The midventricular
slice position of the tagging matches the native T1 map-
ping short axis slice. An international expert advisory
group helped to guide adjustments made to the origin-
ally planned protocol [1] to ensure that the protocol
could be consistently conducted within 20 min, but
these have not compromised the information available.

Fig. 1 Planning of the short axis cine stack covering the entire left and right ventricles
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The atrial short axis cine stack has been removed; atrial
end-diastolic and end-systolic volumes and atrial ejec-
tion fraction can be measured with the long-axis cines.
Three long-axis tagged cines have been removed to save
time, but the radial and longitudinal strain parameters
can be derived reliably using feature-tracking techniques
from the untagged long-axis cines acquired. A phase
contrast sequence (~1 min) was added to allow aortic
flow and number of aortic cusps to be captured, adding
scientific value, since aortic stenosis is the most com-
mon heart valve lesion, has a poor prognosis if severe
and is increasingly common in ageing populations. Also
native T1 mapping in one midventricular short axis was
added to allow myocardial tissue characterisation

without the use of contrast agents. The details of the
CMR sequences are summarised in Table 1.

CMR image analysis
Since the time of first data release, researchers are able
to access the DICOM CMR image files, but only a lim-
ited range of measures derived from images is currently
available. The automated inline ventricular function op-
tion is enabled on the scanner, which provides automatic
assessment of LV contours and volumes. Given that UK
Biobank provides LV end-diastolic volume, LV end-
systolic volume, LV stroke volume, cardiac output and
cardiac index to researchers without checking the endo-
cardial and epicardial contours for quality it may be rec-
ommended that these are quality checked as the data
application requires. A British Heart Foundation (BHF)
project grant (PG/14/89/31194, PI Petersen, 6/2015 to
5/2018) currently funds the manual analysis to create a
CMR reference standard for the UK Biobank imaging re-
source in 5000 CMR scans. Table 2 provides an updated
list of derived CMR parameters that will be returned to
the UK Biobank resource upon completion of the ana-
lysis. A UK Biobank CMR Image Analysis Consortium
has been formed and has been planning issues around
standardization and automating CMR image analysis.
The work of the consortium expects to reduce the over-
all costs associated with cardiovascular image analysis
for large-scale cohort studies through knowledge shar-
ing, coordination of efforts and capacity building. An
important aspect of the user data access agreement with
UK Biobank is that measures derived in the course of in-
dividual research projects that are of general value to the
research community will be returned to UK Biobank to
be incorporated into the database (with a full description
of the methods used) for others in the research commu-
nity to access after an appropriate embargo period.
Through this mechanism, for example, the CMR Image
Analysis Consortium will return to the UK Biobank

Fig. 2 Transverse aortic cine at the level of the pulmonary trunk/
right pulmonary artery

Fig. 3 Aortic valve flow imaging view planned using the sagittal and coronal left ventricular outflow tract (LVOT) cines
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Table 1 Cardiovascular magnetic resonance protocol for UK Biobank

Description Sagittal
anatomy

Coronal and
Transverse
anatomy”

Long axis cines Short axis cines Aortic distensibility
cine

Tagging Coronal
LVOT cine

Aortic valve
flow

Native T1 map

Pulse sequence:
Simplified terminology
(scientific terminology)

White blood
CMR (bSSFP)

White blood
CMR(bSSFP)

Cine CMR
(bSSFP)

Cine CMR
(bSSFP)

Cine CMR
(bSSFP)

Strain
CMR(GRE)

Cine CMR
(bSSFP)

Flow CMR
(GRE)

Parametric
CMR (ShMOLLI
WIP780B)

Flip angle (°) 80 80 80 80 80 12 80 20 35

TR (ms) 2.6 2.6 2.7 2.6 2.8 8.2 2.7 4.6 2.6

TE (ms) 1.12 1.12 1.16 1.10 1.17 3.90 1.16 2.47 1.07

GRAPPA factor 2 2 2 2 2 0 2 2 2

Slice thickness (mm) 8.0 8.0 6.0 8.0 6.0 8.0 6.0 6.0 8.0

Slice gap (mm) 2.64 4 n.a. 2 n.a. n.a. n.a. n.a. n.a.

Typical Field of
View (mm)

400 x400 400 x 400 380 x 274 380 x 252 380 x 294 350 x 241 380 x 384 340 x 340 360 x 236

Matrix 240 x 158 240 x 158 208 x 187 208 x 187 240 x 216 256 x 174 208 x 187 192 x 173 192 x 192

Voxel size 1.7 x 1.7 x 8.0 1.7 x 1.7 x 8.0 1.8 x 1.8 x 6.0 1.8 x 1.8 x 8.0 1.6 x 1.6 x 6.0 1.4 x 1.4 x 8.0 1.8 x 1.8 x 6.0 1.8 x 1.8 x 6.0 0.9 x 0.9 x 8.0
(Interpolation =
On, factor 2)

Acquired temporal
resolution (ms)

n.a. n.a. 32.64 31.56 28.00 41.05 32.64 37.12 368.28

Calculated
cardiac phases

1 1 50 50 50 1 50 30 1

ECG triggering/
gating

PT n.a. RG RG RG PT RG RG PT

Other
parameters

Inline
Evaluation
Ventricular
Function

Inline Evaluation
Ventricular Function

Grid spacing
6 mm, shared
phases

T1 map
determined
on-line.

Image Filter Off Off Off Off Off Off Off Off Off

Distortion Corr On (2D) On (2D) On (2D) On (2D) On (2D) On (2D) On (2D) On (2D) Off

Raw Filter Off Off Off Off Off Off Off Off On: Weak,
slope 25

Elliptical filter Off Off Off Off Off Off Off Off Off
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Table 1 Cardiovascular magnetic resonance protocol for UK Biobank (Continued)

No of
breath-holds
(expiration)

1 1 1 slice per
breath-hold

1 slice per
breath-hold

1 1 slice per breath-
hold

1 1 1

Orientation Sagittal
(x11)PE
direction = AP

Coronal (x10),
Transverse
(x10)PE direction =
RL & AP

HLA, VLA,
LVOT (sagittal)
viewsPE
direction = varies

Coverage based
to apex in SA
views (approximately x10)
PE direction = AP

Transverse at level
of pulmonary
trunk/right
pulmonary
arteryPE
direction = AP

SA views
(b, m, a)PE
direction = AP

LVOT
(coronal)
view PE
direction = RL

Aortic valve plane
planned on both
LVOT cinesPE
direction = AP

SA (m)PE
direction = AP

Image example

Abbreviations: bSSFP balanced steady state free precession, PT Prospective Triggering, RG Retrospective Gating, b basal, m midventricular, a apical, HLA Horizontal long axis, VLA Vertical Long Axis, LVOT Left Ventricular
Outflow Tract, SA Short Axis
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resource the manually segmented cardiac data and
measures of the quality of the inline ventricular
function contours expressed as calibration correc-
tions for the automated tools relative to the manual
analyses.
It is likely that different groups requesting access

to UK Biobank will analyse images differently. Given
this background we will not provide a detailed de-
scription of CMR image analysis approaches in this
manuscript.

Discussion
We describe the CMR protocol applied in UK Biobank’s
pilot phase which will also be applied when UK Biobank

extends this into the main phase with three centres
using the same equipment and protocols. This manu-
script will serve as a reference to researchers intending
to use the UK Biobank resource for cardiac analyses or
those who wish to replicate the UK Biobank CMR
protocol in other settings.
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