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Abstract

Background: Intravoxel incoherent motion (IVIM) imaging of diffusion and perfusion in the heart suffers from high
parameter estimation error. The purpose of this work is to improve cardiac IVIM parameter mapping using Bayesian
inference.

Methods: A second-order motion-compensated diffusion weighted spin-echo sequence with navigator-based slice
tracking was implemented to collect cardiac IVIM data in early systole in eight healthy subjects on a clinical 1.5 T
CMR system. IVIM data were encoded along six gradient optimized directions with b-values of 0–300 s/mm2.
Subjects were scanned twice in two scan sessions one week apart to assess intra-subject reproducibility. Bayesian
shrinkage prior (BSP) inference was implemented to determine IVIM parameters (diffusion D, perfusion fraction F
and pseudo-diffusion D*). Results were compared to least-squares (LSQ) parameter estimation. Signal-to-noise ratio
(SNR) requirements for a given fitting error were assessed for the two methods using simulated data. Reproducibility
analysis of parameter estimation in-vivo using BSP and LSQ was performed.

Results: BSP resulted in reduced SNR requirements when compared to LSQ in simulations. In-vivo, BSP analysis
yielded IVIM parameter maps with smaller intra-myocardial variability and higher estimation certainty relative to
LSQ. Mean IVIM parameter estimates in eight healthy subjects were (LSQ/BSP): 1.63 ± 0.28/1.51 ± 0.14·10−3 mm2/s
for D, 13.13 ± 19.81/13.11 ± 5.95% for F and 201.45 ± 313.23/13.11 ± 14.53·10−3 mm2/s for D∗. Parameter variation
across all volunteers and measurements was lower with BSP compared to LSQ (coefficient of variation BSP vs. LSQ:
9% vs. 17% for D, 45% vs. 151% for F and 111% vs. 155% for D∗). In addition, reproducibility of the IVIM parameter
estimates was higher with BSP compared to LSQ (Bland-Altman coefficients of repeatability BSP vs. LSQ: 0.21 vs. 0.
26·10−3 mm2/s for D, 5.55 vs. 6.91% for F and 15.06 vs. 422.80·10−3 mm2/s for D*).

Conclusion: Robust free-breathing cardiac IVIM data acquisition in early systole is possible with the proposed
method. BSP analysis yields improved IVIM parameter maps relative to conventional LSQ fitting with fewer outliers,
improved estimation certainty and higher reproducibility. IVIM parameter mapping holds promise for myocardial
perfusion measurements without the need for contrast agents.

Keywords: Cardiac diffusion imaging, motion-compensated diffusion weighted spin-echo, intravoxel incoherent
motion, Bayesian inference, perfusion
Background
Cardiovascular magnetic resonance (CMR) diffusion
weighted imaging relies on signal attenuation due to ran-
dom motion of water molecules in the presence of diffu-
sion encoding gradients. Additionally, microvascular
perfusion can contribute to the signal loss as described by
the intravoxel incoherent motion (IVIM) model [1, 2].
* Correspondence: spinner@biomed.ee.ethz.ch
1Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse
35, 8092 Zurich, Switzerland
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
According to Le Bihan et al. [3, 4], perfusion can be mod-
eled as pseudo diffusion on a macroscopic scale, assuming
random orientation of microvasculature in the capillary
network. Consequently, the signal intensity can be de-
scribed by a bi-exponential signal decay as a function of
the diffusion encoding strength (b-value). As the IVIM
method is an endogenous contrast technique, its applica-
tion is particularly suited to obtain a tissue perfusion
surrogate where contrast agent administration is contrain-
dicated. In recent years, this technique has gained
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significant momentum with successful applications in
various body parts [5–9]. Beyond body and brain applica-
tions, IVIM of the in-vivo human heart has also been
demonstrated [10, 11].
Cardiac IVIM may allow to delineate infarcted and is-

chemic areas showing good agreement with late-
gadolinium enhanced imaging [12, 13]. Moreover, IVIM
may enable the assessment of chronic and acute ische-
mia [14] as well as conditions related to microvascular
obstruction of the myocardium [15].
Despite recent progress, in-vivo cardiac diffusion

weighted imaging still remains challenging due to car-
diac and respiratory motion. Additionally, low signal-to-
noise ratio (SNR) and long scan times are major
impediments to a wider acceptance in a clinical setting.
Motion induced signal loss in spin-echo (SE) based car-
diac diffusion weighted imaging has been addressed by
first-order motion-compensated diffusion gradient de-
signs in conjunction with careful cardiac trigger delay
selection [16] and more recently by second-order mo-
tion compensation [17–19]. Initial results of the applica-
tion of second-order motion compensation for IVIM
acquisitions during systole have previously been pre-
sented in a porcine model [14]. For diastolic imaging,
time-shifted triggering and dedicated post processing
using principal component analysis (PCA) filtering in
combination with temporal maximum intensity projec-
tion (PCATMIP) has been proposed [20–23].
Experimentally, cardiac IVIM parameters were initially

reported for the in-vivo canine heart by Callot et al. [24].
The measured diffusion weighted signal agreed well with
the bi-exponential IVIM model with reduced signal
decay in the absence of perfusion post-mortem [14].
IVIM parameter maps of various organs such as brain

or heart [20, 25] are typically of noisy appearance. Due
to the non-linearity and bad conditioning of the regres-
sion problem, the perfusion related parameters are esti-
mated with considerable error at typical SNR values as
shown in [26, 27]. Besides modifying the data acquisition
protocol to obtain higher SNR at the expense of lower
spatial resolution and/or longer scan time, group ana-
lysis of longitudinal data of individuals incorporating
both intra- and inter-subject variations [28] or regional
smoothing [29] have been proposed. These approaches
are, however, limited by the necessity of repeated mea-
surements across multiple independent subjects or loss
of spatial resolution and increased partial-voluming,
respectively.
To address the SNR limitation of IVIM analysis, a

hierarchical Bayesian data analysis framework has been
presented by Orton et al. [30] and demonstrated for liver
application. Using this approach, information across the
region-of-interest is taken into account for voxelwise
parameter inference. Parameter estimation is performed
using a posterior distribution combining data likelihood
and a hierarchical prior. This combination enables ef-
fective denoising of parameter maps with reduced par-
ameter estimation error.
The objective of the present work was to implement

and assess Bayesian shrinkage prior (BSP) inference for
IVIM parameter mapping of the in-vivo human heart
and compare its performance to segmented least-squares
(LSQ) fitting.

Theory
Intravoxel incoherent motion
The IVIM model [1] in Eq. (1) describes signal magni-
tude of diffusion weighted images as bi-exponential
decay. In addition to diffusion induced signal attenu-
ation, a second compartment of perfusion induced
pseudo-diffusion is taken into account:

S bð Þ ¼ S0 F⋅ exp −bD�ð Þ þ 1−Fð Þ⋅ exp −bDð Þ½ � ð1Þ
where S(b) describes the measured signal as a func-
tion of b-value, S0 the signal without diffusion weight-
ing (b=0 s/mm2), D the diffusion constant, F the
perfusion fraction and D∗ the pseudo-diffusion con-
stant. Note that capital F is used for the perfusion
fraction to be consistent with the notation of Orton
et al. [30].

Least-squares fitting
For LSQ fitting, a segmented approach [6] is imple-
mented assuming the contribution of the perfusion to
reach a maximum of F/(1 − F) at b=0 s/mm2 and to drop
to negligible values for b-values b≫ bSplit. In practice,
high b-values (b ≥ bSplit=200 s/mm2) are fitted to a
mono-exponential diffusion-only model:

S bð Þ≈S0⋅ 1−Fð Þ⋅ exp −bDð Þ ¼ Sint⋅ exp −bDð Þ ð2Þ
If a non-diffusion weighted image S0 is not available,

the intercept Sint does not allow for a direct calculation
of the perfusion fraction F as described in [6], but Sint =
S0 ∙ (1 − F) enables to eliminate S0 in the bi-exponential
model. In the second step of the segmented regression,
the perfusion related parameters F and D∗ are estimated
using the predetermined diffusion coefficient D and the
mono-exponential intercept Sint while taking into ac-
count all considered b-values. By substituting S0 in Eq.
(1), the signal model reads accordingly:

S bð Þ ¼ S0 F⋅ exp −bD�ð Þ þ 1−Fð Þ⋅ exp −bDð Þ½ �

¼ Sint
F

1−F
⋅ exp −bD�ð Þ þ exp −bDð Þ

24 35 ð3Þ

The nonlinear regression is implemented using an
interior-point algorithm in Matlab (Mathworks, Natick,
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Massachusetts, USA) and constrained by an inequality
together with box constraints as in [30]:

D≤D�

4:5⋅10−5≤D≤1:8⋅10−2mm2=s

0:0005≤F≤0:9995

3:4⋅10−4≤D�≤1:0⋅10−1mm2=s

ð4Þ

Bayesian shrinkage prior inference
For Bayesian inference as presented in [30], a marginal-
ized data likelihood is used along with a multivariate
Gaussian prior combined with Jeffrey’s prior [31]. The
approach is implemented using a Markov chain Monte
Carlo (MCMC) method as described in the Appendix 1.

Methods
Computer simulations
IVIM parameter ranges were simulated according to
values reported for the in-vivo heart [14, 20]. The diffu-
sion coefficient was set to D=1.5·10−3 mm2/s, while three
perfusion regimes (low, intermediate, high) were consid-
ered (F/D∗=10/10, 15/15, 20/20 %/10−3 mm2/s). The
simulated SNRs ranged from 10 to 100 in steps of 10
and from 100 to 200 in steps of 25. Gaussian distributed
noise was added followed by magnitude detection to
yield Rician distributed noise mimicking the noise distri-
bution of CMR magnitude images. A single Monte Carlo
simulation run consisted of 1,000 IVIM data sets with b-
values as used in the in-vivo part of this study: 20 to
100 s/mm2 in steps of 20 s/mm2, 125 to 200 s/mm2 in
steps of 25 s/mm2, 250 and 300 s/mm2. Both biasbph i � pRef

�� ��=pRef and variation b�p=pRef with p =D, F
and D∗, pRef the simulated parameter, bph i the mean esti-
mate and b�p the standard deviation of the estimated
parameters were calculated and are reported as relative
errors. The simulation was repeated and resulting par-
ameter estimation errors were averaged 100 times.
Fig. 1 Sequence diagram. Spin-echo acquisition with second-order motion
achieved by a 1–3–3-1 binomial spatial spectral excitation pulse. The excita
allow for reduced field-of-view imaging. Prior to the diffusion weighting, a
shifting the excitation and echo pulses. Various b-values are achieved by ke
(dotted gradient trapezoids)
In-vivo measurements
Second-order motion-compensated SE diffusion weighted
imaging [17, 18] was implemented on a 1.5 T CMR system
(Achieva, Philips Healthcare, Best, The Netherlands), see
Fig. 1. Signal was received with a 5 channel cardiac re-
ceiver array. Written informed consent was obtained from
all subjects prior to imaging. The study protocol was ap-
proved by the ethics committee of the Canton of Zurich.
Consent included imaging as well as publication of anon-
ymized data.
Data were acquired in eight healthy subjects without his-

tory of cardiac disease (6 female, 2 male, weight 64 ± 8 kg,
age 26 ± 4 years, heart rate 64 ± 9 beats/min, min/max heart
rates: 51/81 beats/min) on two separate occasions. Prior to
diffusion imaging, cine data with a temporal resolution of
10 ms were acquired in two chamber and short axis view
orientations. Using the cine images, systolic quiescent time
points were determined visually on a per subject basis.
CMR diffusion weighted imaging was performed during

free-breathing in short-axis view orientation using single-
shot EPI read-out with the reduced field-of-view (FOV)
technique local-look (LoLo) [32]. Slice tracking to account
for breathing motion was controlled by a respiratory 1D
navigator pencil beam placed on the right hemi diaphragm,
accepting all data. A 1–3–3-1 binomial spectral-spatial ex-
citation pulse for fat suppression [33] was employed. Im-
ages were acquired with in-plane resolution: 2.4 × 2.4 mm2,
slice thickness: 10 mm, one mid-ventricular slice, FOV:
230 × 105 mm2, acquired k-space lines: 43, TR/TE: 2 R-R/
73 ms, flip angle: 81 ± 1° (heart rate dependent Ernst angle
[34]), 8 signal averages and 6 vendor gradient optimized dif-
fusion encoding directions. The applied diffusion encoding
strengths included the values described in the previous sec-
tions (20 – 100 s/mm2 in steps of 20 s/mm2, 125 – 200 s/
mm2 in steps of 25 s/mm2, 250 and 300 s/mm2) together
with 0 s/mm2. The trigger delay for the SE sequence was
set to 25% peak systolic contraction [17] with a mean trig-
ger delay of 78 ± 3 ms. Acquisition of the 8 signal averages
for each diffusion encoding strength and direction was
-compensated diffusion encoding gradients. Fat suppression is
tion slab is tilted orthogonally with respect to the 180° pulse to
1D–navigator pencil beam is used for automatic slice tracking by
eping timing constant while varying gradient strengths



Fig. 2 Post-processing workflow. Acquired data consists of six
diffusion encoding directions, twelve diffusion encoding strengths
(b-values) and eight averages. Example magnitudes are displayed at
the top. The lower post-processing workflow diagram summarizes
consecutive data handling steps in every volunteer. After image
reconstruction, image registration is performed to compensate for
residual geometric inconsistencies. Heart rate variations and hence
signal fluctuations due to TR variations are compensated using
recorded ECG signals. Trace data is generated after complex averaging.
This data is used for IVIM parameter estimation employing both LSQ
and BSP regression
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equally distributed along the measurement. Total scan time
was about 18 min at a heart rate of 60 beats per minute.
In-vivo SNR measurements were performed in each

subject. To measure noise, the scans were repeated with
radio-frequency and gradient pulses switched off. Suffi-
cient time (>10 s) was allowed between image and noise
acquisition to ensure complete signal decay. SNR was
determined for each voxel as described in [35].
Imaging in each subject was repeated in consecutive

sessions separated by one week to assess intra-subject
reproducibility.
In addition, diffusion data in an animal model of myo-

cardial infarction was evaluated; see Appendix 2 for fur-
ther details.

Data post-processing
For in-vivo IVIM parameter mapping, images were first
registered using a dedicated groupwise image registration
method [36] employing total variation displacement
regularization and a PCA-based image similarity metric
[37] to correct for in-plane residual geometric inconsisten-
cies. Afterwards, complex averaging [38] of the signal aver-
ages was performed. The IVIM parameters of both
regression methods (LSQ and BSP) and SNR were deter-
mined upon manual masking the left ventricular myocar-
dium. The same segmentation was used for both regression
methods (LSQ and BSP). To avoid partial volume effects,
voxels at the epi- and endocardial borders were excluded
during the segmentation process and all voxels within the
segmented region-of-interest were used for further analysis.
The image magnitudes were corrected for heart rate varia-
tions using recorded R-R intervals and published T1 values
of the myocardium [39]. Figure 2 summarizes all post pro-
cessing steps. IVIM analysis was performed on data with
b ≥ 20 s/mm2 to suppress artifacts from blood flow while
mean SNR was determined on b=0 s/mm2 images.
For BSP inference, the total number of MCMC sam-

ples was set to Ns=20,000. A “burn-in” period of 10,000
(discarded) samples was used before actual sampling.
The Markov chains were initialized with LSQ estimates
of the IVIM parameters. Note that the Markov chains
can be started from arbitrary starting values, however a
starting point close to the actual parameter estimates
shortens the burn-in phase and hence saves computation
time. Further details of the estimation method can be
found in the Appendix of Orton et al. [30]. A vectorized
approach of the referenced procedure was implemented
in Matlab (Mathworks) and run on standard PC hard-
ware (2.9 GHz, 16 GB RAM).

Reproducibility analysis
In order to assess reproducibility of two consecutive scans,
Bland-Altman analysis was performed and the coefficient
of variability was calculated for both scan sessions.
Results
Computer simulations
In Fig. 3, relative errors of D, F and D∗ for BSP versus
LSQ as a function of SNR are reported for a Monte
Carlo simulation. Both methods show overall decreasing
errors for increasing SNR.



Fig. 3 Simulation. Accuracy (bias) and precision (variation) errors of LSQ and BSP are determined from SNR 10 to 200 on simulated data for three
perfusion regimes. Dashed black lines indicate 20% error
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The bias of D with both LSQ and BSP is reduced to
below 20% for all perfusion scenarios at SNR ≥ 20, with
the bias of LSQ remaining between 3 and 10% even at
high SNRs. The variation of D with BSP is consistently
lower over the entire SNR range compared to LSQ. It
drops below 20% error at a SNR of approx. 90 for LSQ,
but remains below 20% already for the lowest simulated
SNR of 10 for BSP. Estimation of the perfusion fraction
F yields lower bias with BSP relative to LSQ between an
SNR of 20 to 90–150 depending on the perfusion regime
tested. LSQ shows an increase in bias for SNR ≥ 125–
175. The variation of F with BSP is consistently lower
compared to LSQ over the entire SNR range and perfu-
sion regimes. The relative error is below 20% for
SNR ≥ 30 if BSP is used for inference. Depending on the
perfusion regime simulated, the error using LSQ remains
above that threshold except for the high perfusion re-
gime at a SNR ≥ 175. The SNR dependency of D∗ shows
consistently lower bias and variation for BSP relative to
LSQ for SNR ≥ 20. For LSQ, bias remains above 20%
error for an SNR of 200 for all perfusion regimes. Vari-
ation of D∗ with LSQ remains also above 20% even at an
SNR of 200 for all perfusion regimes while bias and vari-
ation with BSP are bound to below 20% for SNR values
above 40 and 60, respectively. Based on the simulation,
an overall minimum SNR of 30–60 depending on the
perfusion regime is identified for BSP to determine D, F,
and D∗ within 20% bias and variation. The LSQ method
exhibits errors above the mentioned threshold even at a
SNR of 200.

In-vivo measurements
The in-vivo SNR measured without diffusion weighting
was 19 ± 3 for one signal average, resulting in an SNR of
approximately 54 for averaged data. Figure 4 shows
example in-vivo magnitude images of all b-values. The
bright blood pool signal in the center of the image is
dephased with increasing diffusion weighting. Example
trace magnitude signals averaged across the region-of-
interest are displayed. In addition, trace signals from all
volunteers and repetitions are plotted.
In Fig. 5, example IVIM parameter maps computed

with LSQ and BSP along with corresponding histograms
are shown. While LSQ maps exhibit spatial noise and
patch-like structures, BSP yields a more uniform distri-
bution in the myocardium which is reflected in narrower
distributions of D, F and D∗. Of note, LSQ resulted in a
high number of voxels in which the estimated IVIM pa-
rameters reached or were close to the box constraints.
Figure 6 summarizes various parameter estimates to-

gether with regression quality measures (LSQ red boxes,
BSP blue boxes) as in [30]. The left column summarizes
mean and median estimates across the corresponding
regions-of-interest of all parameters. Both the LSQ mean
and median estimates of D tend to relatively high values
compared to BSP, while the prior mean of BSP is within
the range of previously reported values [20, 40]. Consid-
ering the parameter F, there are notable differences
among the mean and median estimates, indicating the
presence of fitting outliers. Again, the prior mean of BSP
is in the range of previously reported values [20]. The
mean estimates of D∗ are strongly influenced by (high
valued) outliers in the region-of-interest, explaining the
difference between mean and median LSQ estimates.
The BSP prior means take values close to the LSQ me-
dian values. The variability measures within the region-
of-interest in the middle column show reduced variabil-
ity for BSP versus LSQ in all parameters both



Fig. 5 IVIM parameter maps with corresponding histograms. Spatial variation of the parameters is reduced for the Bayesian approach (BSP)
relative to least-squares (LSQ). Histograms show corresponding narrower distributions for BSP versus LSQ. Note that local variations in F are
preserved with the BSP method. Outliers are greatly reduced with BSP for F and D∗

a c

b

Fig. 4 In-vivo data. Example averaged co-registered magnitude trace dataset showing all recorded b-values (a), averaged magnitude signal across
the region-of-interest (highlighted in the small inset) of the same volunteer with error bars showing variations among diffusion encoding direc-
tions together with a mono-exponential fit for b ≥ 200 mm2/s to distinguish the perfusion contribution (b). Mean magnitude signals across all
volunteers and repetitions together with the mean over all measurements and corresponding mono-exponential fits (c). Deviations from a purely
mono-exponential model are discernable for small b-values (b < 150 mm2/s) in b and c. Note that the plots b and c have logarithmic y-axes
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Fig. 6 Parameter regression Box-and-Whisker plots. Red boxes represent LSQ derived values; blue boxes represent BSP derived estimates across
all measurements (volunteers and repetitions). Left column: BSP prior mean values (μp, p = D, F and D∗), means/medians of LSQ pixel-wise
(LSQmean and LSQmedian) and region-of interest (ROI) averaged (LSQROI

mean and LSQROI
median) magnitude derived estimates. Note the logarithmic y-scale

of the D∗ estimates plot. Middle column: parameter estimate variability is displayed as 3.9 × prior standard deviations from the BSP estimation

(3:9� Σ1=2pp ; p ¼ d; f and d∗), as width of the 95% interval of the LSQ estimates and 3.9 × standard deviation over each region-of-interest of the

LSQ estimates (scaled by 3.9 to approximate the 95% interval assuming a Gaussian distribution). Right column: parameter uncertainty displayed
as median of estimated standard deviation under the posterior distribution (σp, p = d, f and d∗)
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considering standard deviation and percentile based
measures. The fit quality in terms of median estimated
standard deviation under the posterior (for example σd)
is displayed in the right column. The BSP based devia-
tions are consistently lower compared to the LSQ based
values.
For reproducibility analysis, medians across the left

ventricular myocardium/region-of-interest were consid-
ered because of the large amount of outliers for LSQ fit-
ting. Figure 7 shows the Bland-Altman analysis of two
consecutive scans within one session. Mean biases
(LSQ/BSP) of −0.02/−0.05·10−3 mm2/s for D, −0.58/
+0.51% for F and +26.28/−1.56·10−3 mm2/s for D∗ were
found. The Bland-Altman coefficients of repeatability
are (LSQ/BSP): 0.26/0.21·10−3 mm2/s for D, 6.91/5.55%
for F and 422.80/15.06·10−3 mm2/s for D*.
Figure 8 shows a summary over all measurement esti-

mates. The upper row displays medians across the
regions-of-interest for both sessions. As in Fig. 6, the es-
timates of D were found to be higher for LSQ compared
to BSP. The medians of the LSQ/BSP estimates are
covering ranges of 0.61/0.51·10−3 mm2/s for D, 14.79/
10.27% for F, 763.37/27.42·10−3 mm2/s for D∗. The
lower row of Fig. 8 reports all measurements by dis-
playing the means across all voxels within the
regions-of-interest and the corresponding standard
deviations. The mean values of the IVIM parameters
are (LSQ/BSP) 1.63 ± 0.28/1.51 ± 0.14·10−3 mm2/s for
D, 13.13 ± 19.81/13.11 ± 5.95% for F and
201.45 ± 313.23/13.11 ± 14.53·10−3 mm2/s for D∗.
The estimates for all IVIM parameters from the two
inference procedures are significantly different
(p < 0.05) from each other using the Wilcoxon
signed-rank test. Both mean D and F are within 10%
relative difference, but the mean estimates of D∗ are
one order of magnitude different from each other.
This is again due to the high number of outliers pro-
duced by the LSQ method. The standard deviations
of all three IVIM parameters are consistently lower
for BSP compared to LSQ.



Fig. 7 Bland-Altman analysis. Bland-Altman plots showing intra-subject reproducibility of the medians across the regions-of-interest of two
consecutive scan sessions for both LSQ and BSP. Medians were chosen to reduce the influence of the high ratio of LSQ outliers. Note
the different plot ranges of D∗ for LSQ and BSP
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Potential scan time reduction was investigated by retro-
spectively skipping diffusion encoding gradient directions.
The reduced SNR due to data subsampling leads to a mean
absolute error across all voxels of all measurements of 0.25/
0.14·10−3 mm2/s (D), 11.38/4.67% (F) and 185.38/15.82·10
−3 mm2/s (D∗) for LSQ/BSP if only three instead of all six
directions are used as shown in Fig. 9.
The LSQ and BSP estimates were further compared by

a regression analysis of the median estimates across the
corresponding regions-of-interest as shown in Fig. 10.
The diffusion coefficient exhibits an approximately linear
correlation between the two methods with LSQ esti-
mates tending to higher values. For the perfusion param-
eters there is no clear linear correlation. Especially D∗

exhibits outliers. The Kullback-Leibler divergences
DKL(LSQ| | BSP) of the BSP parameter estimates from
the LSQ estimates are summarized for all measurements
in Fig. 10. The median divergences and standard devia-
tions were: 15 ± 11/16 ± 11/14 ± 10 bit for D/F/D∗

respectively.
The infarcted septal region in an animal model

exhibits reduced blood flow in a conventional con-
trast enhanced first pass perfusion scan as well as re-
duced IVIM perfusion parameters for both regression
methods. The BSP derived maps do not contain out-
liers and hence allow a clearer delineation of the in-
farcted area compared to LSQ. Further details can be
found in Appendix 2.

Discussion
In the present work, Bayesian shrinkage prior inference
has been implemented and compared to segmented
least-squares fitting for IVIM parameter mapping in the
in-vivo human heart.
Robust data acquisition was possible using a second-

order motion-compensated diffusion weighted spin-echo
sequence [17] triggered to early systole. Using a trigger
delay of 25% peak systole is advantageous because of in-
creased coronary flow compared to peak contraction.
Moreover, a large part of systole is potentially available
for IVIM acquisitions as shown in [17]: trigger delays in
the range of 15–77/79% peak systole at the apex/base
allow for robust diffusion data acquisition. In addition,
imaging in systole has the advantage of a relatively thick
myocardium compared to the voxel size.
Using motion-compensated diffusion gradients may

lead to a reduced sensitivity to blood circulation and
myocardial perfusion [41]. However, deviations from a



Fig. 8 Summary. Top row: medians across the regions-of-interest for the two sessions and scans (connected by dashed lines). The means of the
medians of the two intra-session repetitions are connected by solid lines for the two sessions. The BSP estimates are clustered closer together
and cover a smaller range compared to the LSQ derived estimates. Bottom row: means and standard deviations of all estimates across all
volunteers and repetitions. The standard deviations are consistently smaller for BSP. The parameter estimates of the two methods are
significantly different (*, p < 0.05). Note the logarithmic y-axes for D∗
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mono-exponential diffusion model at lower b-values due
to perfusion were observed in all measurements indicat-
ing sufficient sensitivity to microcirculation and perfu-
sion. Balancing motion-induced signal loss due to
cardiac bulk motion while achieving optimal sensitivity
to perfusion is however a subject deserving further
attention.
Computer simulations revealed minimum SNR thresh-

olds of 30–60 for relative errors in terms of bias and
Fig. 9 Data subsampling. Absolute pixel-wise parameter estimation error for
gradient directions. Boxes indicate mean values across all voxels of all measur
variation of 20% each, depending on the perfusion re-
gime for BSP while the LSQ method required a mini-
mum SNR of at least 200. The increase in bias in F for
the SNR range of 125–175 using LSQ is suspected to be
an artefact of the segmented fit, which leads to an error
propagation of D and Sint into the estimation of the per-
fusion parameters. Furthermore, we note that Federau
and colleagues also reported a similar increase in bias in
F in Fig. 1 of [27] using a segmented approach; albeit in
both LSQ and BSP methods versus number of used diffusion encoding
ements; error bars are displaying corresponding standard deviations



a b

c d

Fig. 10 Regression lines & Kullback-Leibler divergences. The plots a, b and c display the medians across the corresponding regions-of-interest
(ROI) of all measurements together with regression lines. Respective coefficients are shown in the legends. The plot d summarizes the Kullback-
Leibler divergences of the BSP estimates from the LSQ estimates of all measurements
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the SNR range of approx. 20–40 with simulated IVIM
parameters which are commonly found in the brain
(D=0.7·10−3mm2s, F=4% and D∗=17·10−3mm2s). Even
though the relative bias in F in the considered SNR
range is below about 20%, the segmented fit might bene-
fit from a joint parameter estimation (potentially using
two regimes of mono- and bi-exponential decay) in this
regard. While these simulation results are indicative,
several factors confounding in-vivo measurements have
not been taken into account in the simulations including
residual motion artifacts and partial voluming with hy-
perintense blood signal and epicardial fat [42]. These ef-
fects would lead to a broadening of the parameter
histograms. Accordingly, the width of the prior is in-
creased by the presence of a large number of affected vox-
els. The shrinking procedure in these cases is less effective.
In-vivo, BSP analysis resulted in IVIM parameter maps

with considerably smaller intra-myocardial standard de-
viations relative to LSQ. Both variability and estimation
uncertainty in terms of standard deviation under the
posterior were greatly reduced with BSP compared to
LSQ (Fig. 6), indicating the benefit of taking into ac-
count prior knowledge. The setting of arbitrary fit con-
straints was obsolete in the BSP procedure. In addition,
BSP regression was aided by the prior which led to the
elimination of outliers on or close to the fit boundaries.
An effective spatial denoising of the parameters can be

achieved because the prior in BSP is chosen to be a
unimodal distribution. This prior assumes a population
mean of the IVIM parameters for the whole region-of-
interest and hence assumes the myocardium of the left
ventricle to have a rather homogenous spatial tissue
characteristic. If local pathologies such as myocardial
infarcts (as for example presented in Appendix 2) and
corresponding fibrous tissue with reduced perfusion [14]
are present, a different choice of priors such as a spatial
homogeneous prior [43] is deemed more appropriate
[42]. Alternatively, multimodal priors can be applied to
distinguish among different tissue types while still
retaining spatial information. Methods using mixture
models [44] of multivariate Gaussians could also be im-
plemented to address this limitation. In contrast to the
LSQ approach, which allows data processing on a
pixel-by-pixel basis, the BSP method requires pre-
segmentation of the data, which renders automation in a
post-processing workflow more challenging.
Overall, the in-vivo IVIM parameters measured in

this study are in good accordance with recent
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literature [10, 20]. The diffusion coefficients D found
in this study using LSQ and BSP were within the
range of the values found in [10, 20]. A higher mea-
sured diffusivity is indicative of residual motion ef-
fects in the data [45]. In addition, the mean
diffusivity measured using spin-echo based diffusion
tensor imaging (DTI) during early systole [40] was
within 14% and 6% of the mean measured diffusion
coefficient of the present study for LSQ and BSP, re-
spectively. The measured perfusion fraction F was
found to be lower compared to data reported in [10].
The LSQ and BSP estimation of approx. 13% is close to
the 12% found in [20] during diastole. The pseudo-
diffusion coefficients D∗ of 201.50 ± 313.20 mm2/s
(LSQ) and 13.11 ± 14.53 mm2/s (BSP) as measured in
the present study are different from previous data
(52.68 ± 52.61·10−3 mm2/s [10], 43.6 ± 9.2·10−3 mm2/s
[20]). However, D∗ usually contains the highest number of
outliers and the mean across the region-of-interest is
therefore prone to be heavily influenced by the choice of
the actual value of the box-constraints. If the medians
across the regions-of-interest are considered, it is shown
that the majority of the LSQ estimates gather in the range
of 20 to 50·10−3 mm2/s. Moreover, data in Fig. 6 indicates
that mean estimates of D∗ are considerably influenced
by outliers with median parameter values close to the
ones found using the BSP method.
The IVIM perfusion parameters in an infarcted animal

model (see also Appendix 2) show good accordance with
the perfusion defect visible in the contrast enhanced per-
fusion scan, especially considering the blood flow related
[25, 27] product of F ×D∗ of the BSP derived estimates.
However, the extension of the infarct indicated by IVIM
appears smaller compared to the darkened area of the
contrast enhanced perfusion scan. This might be due to
residual motion and/or partial voluming which can yield
elevated IVIM parameter estimates.
All SNR measurements were obtained from a single

signal average. Thereby confounding factors due to
image registration and phase correction for averaging of
complex data were avoided. The in-vivo SNR was above
the 20% parameter error threshold found in simulations.
The scan time of ca. 18 min for a heart rate of 60 bpm
for this study was in-between previous scanning times of
15 min [10] and 20 min [20]. Optimizations of the ex-
periment design in terms of b-value distribution [46],
higher static field strength and improved gradient per-
formance to reduce echo times may allow to reduce par-
ameter estimation error and scan time.
By design, Bayesian approaches exploiting information

across the region-of-interest can be used to examine dis-
tributed rather than focal pathologies of the myocar-
dium. Accordingly, potential applications relate to
microvascular obstruction and reduced and/or delayed
perfusion of the myocardium in hypertrophic cardiomy-
opathy and diabetes [15, 47].

Conclusion
Bayesian IVIM parameter mapping yields improved par-
ameter maps relative to conventional segmented least-
squares fitting in the human heart. In conjunction with
motion-compensated diffusion weighted spin-echo se-
quences, robust parameter estimation can be achieved
providing a tissue perfusion surrogate without contrast
agent application. Further in-vivo studies are now war-
ranted to assess the performance of the method in rele-
vant patient populations.

Appendix 1
Hierarchical Bayesian modelling
The Bayesian inference procedure [30] is summarized as
follows. Using the IVIM model

Sn ¼ S0 F⋅ exp −bnD
�� �

þ 1−Fð Þ⋅ exp −bnDð Þ
h i

þ εn ;

ð5Þ
where Sn is a data point measured at the n-th b-value bn
with error term εn of Gaussian distribution with variance
σS
2, the data likelihood reads:

pðSjD; F ;D�; S0; σS2Þ ¼ 2πσS
2

� �−N=2
exp −

1
2σS

2

XN
n¼1

Sn−S0gn
� � !

;

ð6Þ
where S = [S1, S2,…SN]

T, gn = F ∙ exp(−bnD
∗) + (1 − F) ∙

exp(−bnD) and N=number of b-values.
From a Bayesian perspective, nuisance parameters

which are of no interest can be marginalized out. Here,
the nuisance parameters S0 and σS

2 are integrated out by
using a conjugate Normal-Inverse-Gamma prior
distribution

p S0; σS
2

� � ¼ N S0j0; δ2σS
2= gTg
� �� �

⋅IG σS
2jα; β� �

ð7Þ
with g = [g1, g2,…gN]

T and integration over the domain
of definition:

p SjD; F;D�ð Þ ¼
Z∞
0

Z∞
−∞

p S0; σS
2

� �
p SjD; F;D�; S0; ; σS

2
� �

dS0 dσS
2

ð8Þ
The choice of prior allows for an analytic evaluation of

Eq. (8). The influence of the prior for the marginalization
procedure is diminished by taking the limits of the vari-
ance of the normal distribution δ→∞ and shape and scale
parameters of the Inverse Gamma distribution α, β→ 0,
which encodes a complete lack of prior information.
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Ignoring proportionality constants which do not depend
on the IVIM parameters and are hence not necessary for
parameter inference, the marginalized likelihood becomes:

p SjD; F ;D�ð Þ∝ STS− STg
� �2

= gTg
� �h i−N=2

ð9Þ

In order to take advantage of the histogram structure
of IVIM parameters, a hierarchical prior structure is
adopted. First, a multivariate Gaussian is applied to the
transformed IVIM parameters. Those transformations
are mapping the domain of definition to the field of real
numbers:

d ¼ log Dð Þ
f ¼ logit Fð Þ ¼ log Fð Þ− log 1−Fð Þ
d� ¼ log D�ð Þ

ð10Þ

The multivariate normal distribution considers hetero-
geneity across the region-of-interest and models correla-
tions between the parameters via the covariance matrix Σμ:

pðθijμ;ΣμÞ ¼ 2πΣμ

�� ��−1=2 exp −
1
2

θi−μð ÞTΣμ
−1 θi−μð Þ

� �
ð11Þ

The mean across the region-of-interest of the par-

ameter θi = [di, fi, d
∗
i] of voxel i is μ ¼ μd; μf ; μd�

h i
.

Jeffrey’s prior [31] is used for the hyper-parameters μ
and Σμ:

p μ;Σμ

� � ¼ I Σμ

� ��� ��1=2 ¼ Σμ

�� ��−1=2 ð12Þ
This prior describes a high probability for a large de-

terminant of the Fisher Information I(Σμ) and hence in
the considered case of a multivariate normal distribution
for a small determinant of the parameter covariance
matrix Σμ in the region-of-interest. Therefore a “shrink-
ing” of parameter estimates towards the mean of the dis-
tribution can typically be observed. The posterior is then
given by

pðθ1:M;μ;ΣμjS1:MÞ ¼ p μ;Σμ

� �QM
i¼1pðSijθiÞp θið Þ

p S1:Mð Þ
ð13Þ

The total number of voxels considered here is M. The
parameter independent data evidence p(S1 :M), is not re-
quired for the inference procedure. Expectation values
under the posterior in Eq. (13) are calculated for ex-
ample as

d̂ i ¼
Z

dipðθi:M;μ;ΣμjS1:MÞ dθi:M dΣμ dμ ð14Þ

and analogously for other parameters or quantities.
In order to determine variance under the posterior as
uncertainty measure for the LSQ method, a flat prior ac-
cording to the box constraints in Eq. (4) is chosen in-
stead of the hierarchical prior structure [30].

Markov chain Monte Carlo (MCMC) implementation
The integration in Eq. (14) cannot be performed analyt-
ically and therefore a MCMC-based numerical approach
is implemented [30]. The expectation value of a param-
eter (for example d) is approximated by using Ns sam-

ples d jð Þ
i from a Markov chain output:

d̂ i ¼ 1
Ns

XNs

j¼1

di
jð Þ ð15Þ

Appendix 2
Infarcted porcine heart
Both LSQ and BSP approaches were compared in an
animal model of acute myocardial infarction. Obtained
diffusion weighted data from a single female pig (65 kg,
heart-rate 68 beats/min) using second-order motion-
compensated diffusion gradients [17] were evaluated.
The imaging parameters were: in-plane resolution:
2.4 × 2.4 mm2, slice thickness: 10 mm, one apical slice,
FOV: 230 × 120 mm2, acquired k-space lines: 49, TR/TE:
2 R-R/93 ms, trigger delay 50% peak systole, flip angle:
90°, 8 signal averages and 6 diffusion encoding directions
[48]. The 15 optimized diffusion encoding strengths were
taken from [46] with a maximum b-value of 740 s/mm2.
The apical myocardial infarct was induced by a perman-
ent distal ligation of the left anterior descending coronary
artery (LAD). The animal was anesthetized by a constant
dose of Propofol (1.0 ml/kg/min) during surgery and the
scan. The experiment was performed in adherence to the
Swiss law of animal protection and approved by the
Zurich Cantonal veterinary office.
The IVIM parameter maps are shown together with

dynamic contrast enhanced (DCE) first pass perfusion
images in Fig. 11. The infarcted area can be delineated
in the septal area (red arrow). The LSQ and BSP derived
diffusion coefficients D are similar across the whole LV.
The perfusion fraction F is reduced in the septal area for
both methods, with outliers present for LSQ. The
pseudo-diffusion coefficient D∗ is also clearly reduced in
this area for BSP but shows insensible high values for
LSQ due to the optimization reaching the fit constraints.
If the blood flow related [25, 27] product of F ×D∗ is
considered, the LSQ derived product does not allow to
delineate the infarcted region due to many outliers. In
contrast, the septal region in the BSP derived map shows
reduced IVIM perfusion parameters.



Fig. 11 Infarcted porcine heart animal sub study. Dynamic contrast enhanced (DCE) first pass imaging shows a myocardial infarct in the septal
area (red arrow). Corresponding IVIM parameter maps in the same slice position reveal a reduction in perfusion related parameters in the septal
region. The LSQ approach suffers from many outliers, while the BSP approach shows low parameter variability (red arrows)
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