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Abstract 

Background:  Cardiovascular magnetic resonance (CMR) cine displacement encoding with stimulated echoes 
(DENSE) measures heart motion by encoding myocardial displacement into the signal phase, facilitating high accu-
racy and reproducibility of global and segmental myocardial strain and providing benefits in clinical performance. 
While conventional methods for strain analysis of DENSE images are faster than those for myocardial tagging, they 
still require manual user assistance. The present study developed and evaluated deep learning methods for fully-
automatic DENSE strain analysis.

Methods:  Convolutional neural networks (CNNs) were developed and trained to (a) identify the left-ventricular (LV) 
epicardial and endocardial borders, (b) identify the anterior right-ventricular (RV)-LV insertion point, and (c) perform 
phase unwrapping. Subsequent conventional automatic steps were employed to compute strain. The networks were 
trained using 12,415 short-axis DENSE images from 45 healthy subjects and 19 heart disease patients and were tested 
using 10,510 images from 25 healthy subjects and 19 patients. Each individual CNN was evaluated, and the end-to-
end fully-automatic deep learning pipeline was compared to conventional user-assisted DENSE analysis using linear 
correlation and Bland Altman analysis of circumferential strain.

Results:  LV myocardial segmentation U-Nets achieved a DICE similarity coefficient of 0.87 ± 0.04, a Hausdorff dis-
tance of 2.7 ± 1.0 pixels, and a mean surface distance of 0.41 ± 0.29 pixels in comparison with manual LV myocardial 
segmentation by an expert. The anterior RV-LV insertion point was detected within 1.38 ± 0.9 pixels compared to 
manually annotated data. The phase-unwrapping U-Net had similar or lower mean squared error vs. ground-truth 
data compared to the conventional path-following method for images with typical signal-to-noise ratio (SNR) or low 
SNR (p < 0.05), respectively. Bland–Altman analyses showed biases of 0.00 ± 0.03 and limits of agreement of − 0.04 
to 0.05 or better for deep learning-based fully-automatic global and segmental end-systolic circumferential strain vs. 
conventional user-assisted methods.

Conclusions:  Deep learning enables fully-automatic global and segmental circumferential strain analysis of DENSE 
CMR providing excellent agreement with conventional user-assisted methods. Deep learning-based automatic strain 
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Background
Myocardial strain imaging is sensitive and prognos-
tic for the assessment of heart disease, with potential 
advantages over imaging of left ventricular (LV) ejec-
tion fraction (LVEF)  [1]. Among various strain imaging 
methods, cardiovascular magnetic resonance (CMR) cine 
displacement encoding with stimulated echoes (DENSE)  
[2–4] CMR uniquely measures heart motion by encod-
ing myocardial displacement into the signal phase, which 
facilitates high measurement accuracy  [5], high repro-
ducibility of global and segmental strain  [6, 7], and rapid 
computation of displacement and strain [5, 8]. These 
properties translate to benefits in clinical performance. 
For example, cine DENSE shows superiority over late 
gadolinium enhanced (LGE) CMR and feature tracking in 
predicting major adverse cardiac events after myocardial 
infarction  [9] and predicting outcomes of heart failure 
patients treated with cardiac resynchronization therapy  
[10]. Cine DENSE also detects contractile dysfunction 
in childhood obesity  [11] and adult type 2 diabetes even 
when LVEF is normal  [12].

While low-rank  [13, 14] and reduced field-of-view  
[15] methods have been developed recently to acceler-
ate data acquisition for DENSE, there remains a need 
and opportunity to accelerate DENSE strain analysis 
and to eliminate all steps that require user assistance. 
Image analysis of cine DENSE to compute LV whole-
slice (global) and segmental strain requires the following 
steps: (a) segmentation of the LV myocardium, (b) iden-
tification of the anterior right-ventricular (RV) insertion 
point into the LV to align the American Heart Associa-
tion 16-segment model  [16], (c) unwrapping of poten-
tially wrapped displacement-encoded phase values of the 
myocardium, (d) computation of the spatiotemporal dis-
placement field, and (e) computation of strain. Currently, 
LV segmentation of DENSE is typically performed using 
motion-guided segmentation  [8], which requires manual 
segmentation of the LV epicardial and endocardial bor-
ders at a single cardiac phase, followed by automated 
propagation of these borders to all other phases (guided 
by the measured myocardial displacements). User inter-
vention is sometimes needed to adjust the segmentation 
results. Identification of the anterior RV insertion point 
is currently performed manually by an experienced user. 
Also, phase unwrapping is typically performed using 
a path-following method  [5], and this method requires 

user selection of seed points placed in regions known 
to not have phase wrapping. After segmentation, iden-
tification of the anterior RV insertion point, and phase 
unwrapping, the remaining steps to compute displace-
ment and strain are performed automatically without 
user assistance, as described  [4, 5, 17, 18].

In this study we aimed to develop a fully-automated 
post-processing approach for DENSE. Recently, deep 
learning (DL) methods, particularly convolutional neu-
ral networks (CNN), have shown promising results for 
segmentation and analysis of various CMR techniques  
[19–29]. In this work, we developed a pipeline for fully-
automated analysis of cine DENSE data using four CNNs 
to (a) identify the LV epicardial border, (b) identify the LV 
endocardial border, (c) identify the anterior RV-LV inser-
tion point, and (d) perform phase unwrapping of the LV 
myocardium. The proposed pipeline eliminates all user 
intervention and reduces the time for image analysis. To 
validate the proposed approach, each new step was com-
pared with expert-user or ground-truth methods and the 
end-to-end processing of global and segmental strains 
were compared to previously-validated user-assisted con-
ventional DENSE analysis methods  [17].

Methods
Dataset
For training and testing CNNs, cine DENSE data were 
collected from five medical centers (University of Vir-
ginia, Charlottesville, Virginia, USA, Emory University, 
Atlanta, Georgia, USA, Royal Brompton Hospital, Lon-
don, United Kingdom, St. Francis Hospital, Roslyn, New 
York, USA, and Stanford University, Stanford, California, 
USA). This research was performed in accordance with 
the Declaration of Helsinki and in accordance with pro-
tocols approved by the institutional review boards of par-
ticipating institutions. All participants provided written 
informed consent.

Short-axis cine DENSE CMR data from 38 heart-
disease patients and 70 healthy subjects were used for 
network training and testing. Twenty-six datasets were 
acquired using 1.5 T systems (Magnetom Avanto or Aera, 
Siemens Healthineers, Erlangen, Germany) and 82 were 
acquired using 3 T systems (Magnetom Prisma, Skyra, or 
Trio, Siemens Healthineers). The types of heart disease 
included dilated cardiomyopathy, hypertrophic cardio-
myopathy, coronary heart disease, hypertension, acute 

analysis may facilitate greater clinical use of DENSE for the quantification of global and segmental strain in patients 
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coronary syndrome and heart failure with left bundle 
branch block. For each subject, 1–5 short-axis slices were 
acquired, each with 20–59 cardiac phases. Training data 
included 12,415 short-axis DENSE images from 64 ran-
domly selected subjects, and 20% of all training data were 
used for model validation. Forty-four datasets, including 
25 healthy subjects and 19 patients imaged at both field 
strengths, were selected for the test data (10,510 total 2D 
images, including those with displacement encoded in 
both the x- and y-directions).

Cine DENSE image acquisition protocol
Cine DENSE image acquisition parameters included a 
pixel size of 1.56 × 1.56 mm2–2.8 × 2.8 mm2, FOV = 200 
mm2 (using outer volume suppression) to 360 mm2, 
slice thickness = 8 mm, a temporal resolution of 17 msec 
(with view sharing), 2D in-plane displacement encoding 
using the simple three-point method  [30], displacement-
encoding frequency = 0.1 cycles/mm, ramped flip angle 
with final flip angle of 15°, echo time = 1.26 − 1.9 msec, 
and a spiral k-space trajectory with 4–6 interleaves.

Overview of image analysis pipeline
We designed a fully-automatic DENSE analysis pipeline 
(Fig. 1) comprised of the following steps: (a) LV segmen-
tation, (b) identification of the anterior RV-LV insertion 
point, (c) phase unwrapping, and (d) displacement and 
strain analysis. Steps (a)–(c) utilize CNNs, and step (d) 
uses previously-developed and validated fully-automatic 
methods  [5, 31].

CNN for LV segmentation
To create the ground-truth LV segmentation data, manual 
image annotation was performed for DENSE magnitude-
reconstructed images. The LV endocardial and epicardial 
borders were manually traced for all frames using DEN-
SEanalysis software  [17]. To automatically segment the 
LV from DENSE magnitude images, we trained one U-Net 
to extract the epicardial border, and another to extract the 
endocardial border, and we identified the myocardial pix-
els by performing a logical XOR between the two masks. 

The 2D U-Net networks utilized the structure presented 
by Ronneberger  [32] with modifications to get the best 
results for the proposed application. Specifically, in the 
contracting path, each encoding block contains two con-
secutive sets of dilated convolutional layers with filter size 
3 × 3 and dilation rate 2, a batch normalization layer and a 
rectified linear activation layer. Compared with traditional 
convolutions, dilated convolutions can increase the recep-
tive field size without increasing the number of parameters 
and showed improved performance in our experiments. 
Padding was used in each convolutional operation to main-
tain the spatial dimension. Between each encoding block, 
pooling layers with step size of 3 × 3 and stride 2 were 
applied to reduce the spatial dimension in all directions. 
The number of features was doubled for the next encod-
ing block. Four symmetric encoding and decoding blocks 
were used in the contracting and expanding path, respec-
tively. Each decoding block contained two consecutive 
sets of deconvolutional layers with filter size 3 × 3, a batch 
normalization layer and a rectified linear activation layer. 
The output of each encoding block in the contracting path 
was concatenated with those in the corresponding decod-
ing block in the expanding path via skip-connections. The 
final segmentation map contained two classes: background 
and endocardium or epicardium. The loss function was the 
summation of the weighted pixel-wise cross entropy and 
soft Dice loss. The assigned class weights were 1 for back-
ground, 2 for endocardium in the endocardial network and 
3 for the epicardial network. During training, data aug-
mentation on-the-fly was performed by applying random 
translations, rotations and scaling followed by a b-spline-
based deformation to the input images and to the corre-
sponding ground-truth label maps at each iteration. This 
type of augmentation has the advantage that the model 
sees different data at each iteration. We used 400 epochs to 
train each network; therefore, each image was augmented 
400 times. After applying the random transformations to 
the label maps, a threshold value of 0.5 was applied to the 
interpolated segmentation to convert back to binary values 
[33]. To improve the accuracy and smoothness of the seg-
mented contours, during testing, each image was rotated 

Fig. 1  Diagram of fully-automated strain analysis pipeline for cine DENSE. LV  left ventricular, RV  right ventricular
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9 times at an interval of 40 degrees and the corresponding 
output probability maps were rotated back and averaged 
[34]. Hereafter, we refer to this testing process as “testing 
augmentation”.

CNN to identify the anterior RV‑LV insertion point
The anterior RV-LV insertion point is the location of the 
attachment of the anterior RV wall to the LV, and its loca-
tion defines the alignment of the American Heart Associ-
ation 16-segment model [16] typically used for segmental 
strain analysis of the LV. As the first frame of cine DENSE 
images generally has poor blood-myocardium contrast, 
we trained a U-Net to detect the anterior RV-LV insertion 
point on early-systolic frames (frames 5 and 6), where the 
insertion point is reliably well visualized. To create the 
ground-truth data, one expert user identified one point 
in these frames from magnitude-reconstructed DENSE 
images. During network training, instead of using that 
point as an absolute ground-truth, which only provides 
very limited information to the network to learn and suf-
fers from severe class imbalance, we defined a circle with 
a six-pixel radius around that point as the network tar-
get. The network’s inputs were the DENSE magnitude 
image and the segmented LV binary mask obtained by 
the aforementioned myocardial segmentation networks 
as an additional input channel. The network’s output is 
the probability map of a circle for which the center of 
mass is defined to be the detected RV-LV insertion point. 
The same aforementioned U-Net structure was used. The 
loss function was the combination of the absolute differ-
ence and the soft Dice between the target and the output 
probability map computed using a Sigmoid function. The 
same on-the-fly data augmentation was applied during 
training, but testing augmentation was not used for this 
network.

CNN for phase unwrapping
In phase-reconstructed CMR images, the phase value is 
inherently confined to the range (−  π, π). However, in 
cardiac DENSE in order to balance displacement sensi-
tivity, signal-to-noise ratio (SNR), and suppression of 
artifact-generating signals, displacement-encoding fre-
quencies that lead to phase shifts of greater than π are 
typically used, and ± 1 cycle of phase wrapping typically 
occurs during systole [5]. Thus, phase unwrapping is 
required to convert phase to displacement.

The unwrapped phase ψij can be estimated from the 
potentially-wrapped measured phase ϕij as follows:

where kij is an integer and where −π< ϕij < π . The 
phase unwrapping problem requires determining 
kij for each pixel indexed by i and j. Thus, the phase 

(1)ψij = ϕij + 2πkij

unwrapping can be defined as a semantic segmenta-
tion problem [35], and we pursued such an approach 
where the network would label each pixel as belonging 
to one of three classes (no wrap, -2π wrapped, or + 2π 
wrapped) as shown in Table 1.

To create the ground truth for unwrapped phase 
images, we used a highly accurate but very slow phase 
unwrapping method based on multiple phase predic-
tion pathways and region growing [36]. We also visually 
checked the results of this method, frame by frame, and 
discarded all frames with unwrapping errors. The same 
dilated U-Net structure with three output classes was 
trained using a pixel-wise cross-entropy loss function. 
The network’s input was the segmented phase-recon-
structed DENSE image and the output was the wrap-
ping label map. With this design, after applying the 
CNN, the value of kij is known for each pixel. Then by 
multiplying kij by 2π and adding the result to the input 
wrapped image, the unwrapped phase is computed.

For this network, testing augmentation was not 
applied. However, we applied training augmentation by 
adding Gaussian noise with a mean of zero and a ran-
domly chosen standard deviation between (0, 0.75) to 
simulate different signal-to-noise ratios and by manip-
ulating the unwrapped ground truth data to generate 
new wrapped data. Data augmentation is the key point 
as overfitting is avoided and the network is trained on 
data with lower SNR and more wrapping patterns. To 
create augmented new wrapped data, an unwrapped 
ground-truth phase image is multiplied by a random 
constant number between 0.8 and 2.0, and then it is 
wrapped to the range (−  π,π). For each augmented 
phase image, the kij value is known and if it is 0, 1, or 
-1 then it is used for training. Figure 2a illustrates how 
a new phase-wrapping pattern is generated during aug-
mentation and Fig. 2b demonstrates an example of how 
different operations can be applied to create augmented 
data. For this network, we randomly generated trans-
formations comprised of translation, rotation, scaling, 
shearing, and b-spline deformation and applied them to 
the training images along with random phase manipu-
lation and random noise. In total, 7 random augmenta-
tions were applied to each training image.

Table 1  Phase unwrapping label definition 
and the corresponding classes

Class kij Label

No wrap 0 0

Wrapped myocardium (− 2π) − 1 1

Wrapped myocardium (+ 2π)  + 1 2
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Network training and testing
To obtain the best model performance, the final model 
of each network was trained using data from 64 sub-
jects. Network training was performed on a Titan Xp 
GPU (NVIDIA Corporation, Santa Clara, California, 
USA) with 12 GB RAM over 400 epochs using an Adam 
optimizer at a learning rate of 5E-4 and a mini batch 
size of 10. The times to train the myocardial segmenta-
tion networks (endocardium and epicardium), RV-LV 
insertion point network, and phase unwrapping network 
were 34, 48, and 30  h, respectively. The networks were 
implemented using Python (version 3.5; Python Soft-
ware Foundation, www.pytho​n.org) with the Tensorflow 
machine-learning framework (version 1.12.0) [37].

Quantitative evaluation of the methods
To quantitatively evaluate the results of myocardial seg-
mentation, the DICE similarity coefficient [38] was com-
puted. This metric measures the overlap between the 
ground-truth segmentation (A) and the CNN’s segmen-
tation (B) as follow:

(2)DICE =
2× |A ∩ B|

|A| + |B|

DICE coefficient is normalized between 0 and 1, where 
“0” indicates complete dissimilarity and “1” indicates 
complete agreement.

In addition, to measure the maximum and average 
distances between the myocardial ground-truth and the 
CNN-generated contours, the Hausdorff distance ( DH ) 
and the mean surface distance (MDS) were computed 
as follows. Given two sets of points A = (a1, . . . , an) 
and B = (b1, . . . , bm) , and an underlying distance 
d(a, b) which is defined as the Euclidean distance 
d(a, b) = �a− b� , DH and MDS are given by:

To assess the accuracy of identifying the RV-LV inser-
tion point position, the Euclidean distance between the 
expert-selected point and the centroid of the automati-
cally-selected region was calculated.

To evaluate the phase-unwrapping CNN, we compared 
it with the widely-used path-following method [5] using 

(3)
DH (A,B) =max (h(A,B), h(B,A))

h(A,B) =max
a∈A

(min (d(a, b))
b∈B

(4)

MSD =mean(hmean(A,B), hmean(B,A))

hmean(A,B) =
1

n

∑

a∈A

(min(d(a, b))
b∈B

Fig. 2  Data augmentation for the phase-unwrapping convolutional neural networks (CNN). Figure a shows how a new phase-wrapping pattern is 
generated during data augmentation using an original wrapped image as input, performing phase unwrapping, scaling of the unwrapped phase, 
and wrapping to the range of (− π,π). Figure b demonstrates an example of serial operations to generate augmented data

http://www.python.org
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mean squared error (MSE). The ground-truth unwrapped 
phase was computed using the phase-unwrapping 
method based on multiple phase prediction pathways 
and region growing [36].

For images with SNR typical of routine DENSE proto-
cols  [15, 39] (phase SNR of approximately 22), MSE ref-
erenced to ground truth were evaluated for the proposed 
U-Net and the path-following method. Similar to the 
phase SNR of velocity-encoded phase contrast imaging  
[40], we calculated the DENSE phase SNR as

where the mean unwrapped phase of an end-systolic 
region of interest (ROI) measures the DENSE phase 
in the region with greatest displacement (representing 
the signal of interest), and the standard deviation of the 
phase of the end-diastolic myocardium provides a meas-
ure of the standard deviation of phase at a cardiac frame 
where the mean phase is essentially zero. Because SNR 
can be lower than typical in some circumstances (such as 
when imaging patients with implanted devices), we also 
evaluated the two methods for lower SNR data gener-
ated by adding noise to our datasets. For low-SNR data, 
as we did not have true unwrapped-phase data to use as 
a ground-truth, we synthetically created the low-SNR 
data (with phase SNR = 5–10) from our test data by add-
ing noise with zero mean and with standard deviation of 
0.75. Adding noise to the original wrapped phase data 
could change the wrapping class of any image pixel. As 
the label of the pixel may not be the same as the corre-
sponding pixel in the original data, for the low-SNR data 
we compared the U-Net with the path-following method 
by calculating the MSE between the unwrapped phase 
and the typical-SNR unwrapped ground truth.

To evaluate the full pipeline shown in Fig. 1 for global 
and segmental circumferential strain analysis of the LV, 
correlations and Bland–Altman analyses were performed 
comparing the proposed deep-learning based method 
and the conventional user-assisted semi-automated 
method (DENSEAnalysis, github open-source software, 
developed by us and others  [17]). In DENSEAnalysis, a 
10th-order polynomial was used for temporal fitting and a 
spatial smoothing parameter of 0.8 was selected.

Results
LV segmentation and anterior RV‑LV insertion point
Evaluation of the U-Nets for LV segmentation using 5,255 
test images resulted in a DICE coefficient of 0.87 ± 0.04, 
a Hausdorff distance of 2.7 ± 1 pixel (equivalent to 
5.9 ± 2.2 mm), and a mean surface distance of 0.41 ± 0.29 

phaseSNR = �
mean

(

unwrapped phase of end − systolic ROI
)

stdev
(

phase of end − diastolic myocardium
) �

pixels (0.9 ± 0.6  mm). The computation times for deter-
mining the epicardial and endocardial contours for a 
single DENSE image, including test augmentation, were 
0.16 ± 0.02 s, 0.15 ± 0.01 s, respectively. The typical semi-
automatic LV segmentation time for DENSE is 3–5 min 
for all cardiac phases, which corresponds to about 6 s per 
frame. The RV-LV insertion point was detected within 
1.4 ± 0.9 pixels compared to the manually annotated 
data. The computation time for detecting the RV-LV 
insertion point was 2.4 ± 0.2 s for all cardiac phases. An 

expert reader uses approximately 20 s to manually define 
the point. Figure 3 shows examples of the automatically 
and manually segmented LV epicardial and endocardial 
contours and the identification of the anterior RV-LV 
insertion point on short axis images at end-diastolic and 
end-systolic frames.

Phase unwrapping
The phase-unwrapping U-Net performed well on both 
typical-SNR and low-SNR DENSE phase images. The 
MSE values for the semantic-segmentation U-Net and 
the standard path-following method are provided in 
Table 2. MSE was similar for typical-SNR data using the 
U-Net and conventional path following, and was lower 
for low-SNR data using the U-Net (p < 0.05). The time 
for DL phase unwrapping for all cardiac phases was 
3.5 ± 0.2  s, which was similar to path following method 
of 3.5 ± 0.7  s. Figure  4 illustrates an example where the 
U-Net and the path-following method were both success-
ful for typical-SNR data and where the semantic-segmen-
tation U-Net outperformed the path-following method 
for low-SNR data.

Strain analysis
We used the fully-automated DL methods to compute 
global and segmental circumferential strain for all test 
data and compared the results with the conventional 
user-assisted DENSE analysis methods  [17]. Figure  5a 
and b show two examples of end-systolic strain maps, 
global and segmental strain–time curves computed using 
the DL-based automated methods and the conventional 
method for a healthy subject and a HF patient with a 
septal strain defect. Very close agreement between the 
DL-based and conventional DENSE analysis methods is 
seen in Fig.  5. Figure  6a shows the Bland–Altman plot 
and the linear correlation comparing the DL and conven-
tional DENSE analysis methods for end-systolic global 
circumferential strain. The bias was 0.001 and the limits 
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of agreement were −  0.02 and 0.02. For the linear cor-
relation, r = 0.97 and the slope was 0.99. A slice-by-slice 
analysis of segmental strain is provided in Fig. 6b–d, and 
shows very good agreement of segmental end-systolic 
strain between the fully-automated DL method and the 
conventional method. The biases were 0.00 ± 0.03 and 
the limits of agreement were −  0.04 to 0.04 for basal 

segments, −  0.03 to 0.03 for mid-ventricular segments, 
and − 0.04 to 0.05 for apical segments. Excellent correla-
tions (r = 0.94–0.97, slope = 0.92–0.98) were found for all 
segments of all slices.

Table 3 shows the mean ± SD of segmental circumfer-
ential strain and the variance ± SD within each segment 
at end-systole for the mid-ventricular slice of all test data. 
Two-way ANOVA showed that while there are differ-
ences between segments for both mean circumferential 
strain (p < 0.05) and variance of circumferential strain 
(p < 0.05), there are no significant differences between the 
conventional user-assisted and DL-based fully-automatic 
methods for mean circumferential strain or the variance 
of circumferential strain.

Discussion
We developed DL-based fully-automated methods for 
global and segmental strain analysis of short-axis DENSE 
CMR from a multicenter dataset. U-Nets were designed, 
trained and found to be effective for LV segmentation, 
identification of the anterior RV-LV insertion point, and 

Fig. 3  An example of automatic deep learning (DL) LV segmentation and identification of anterior RV-LV insertion points by U-Nets (a–c, g–i), and 
the corresponding results provided by an expert user (d–f, j–l). Results are shown at end diastole (ED) and end systole (ES). The epicardial contour is 
in red, the endocardial contour is in green, and the anterior RV-LV insertion point is depicted with a cyan asterisk

Table 2  Comparison of  a  semantic-segmentation U-Net 
and  the  path-following method for  phase-unwrapping 
of displacement encoding with stimulated echoes (DENSE) 
images of the heart

Mean squared error (MSE) values are reported for DENSE images with typical 
signal-to-noise ratio (SNR) and low-SNR
*  Indicates p < 0.05

MSE

Typical SNR U-Net 0.1 ± 0.2

Path-following 0.08 ± 0.08

Low SNR U-Net 0.07 ± 0.09*

Path-following 0.22 ± 0.49
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phase unwrapping. Subsequent steps involving displace-
ment and strain calculations were already automatic, 
thus, with the DL methods, the entire DENSE analysis 
pipeline for global and segmental strain is fully auto-
mated. Our studies validated the performance of each 
individual step, including segmentation, identification of 
the RV-LV insertion point, and phase unwrapping, and 
also validated the end-to-end performance of the entire 
pipeline by showing excellent correlation and agreement 
of whole-slice and segmental strain with well-established 
user-assisted semi-automatic methods.

Our 2D U-Net approach to LV segmentation was 
similar to other published methods for CMR, such as 
those used for cine CMR  [19–22, 24, 26, 28], LGE  [27], 
T1-weighted CMR  [25] and phase contrast [23]. Three-
dimensional convolutions may have advantages for seg-
mentation of cine CMR data through time; however, they 
are less well studied for cine CMR than 2D and they will 
have their own unique challenges (such as the need for 
a constant number of cardiac phases, as one example). 
For cine CMR, to date most studies use a 2D model and 
achieve very good results  [26, 28, 41]. Since 2D models 

work well and our DICE values are reasonably good using 
a 2D approach, our assessment was that a 2D U-Net was 
a reasonable choice. Also, our values for Hausdorff dis-
tance and MSD are similar to the mean contour distance 
of 1.14 mm and Hausdorff distance of 3.16 – 7.25 mm for 
myocardial segmentation reported by others  [19], and to 
the average perpendicular distance of 1.1 ± 0.3 mm also 
reported by others  [26]. We trained two separate U-Nets 
for epicardial and endocardial segmentation, although 
later we found that training one network for myocardial 
segmentation based on the proposed network architec-
ture gives the same performance. The only difference 
was to define three classes of the blood pool, myocar-
dium and background and to assign class weights of 3, 5 
and 1, respectively, to overcome the imbalanced classes 
problem.

Our use of a semantic-segmentation U-Net and our 
data augmentation methods for phase unwrapping are 
new. For data augmentation, by applying prior segmen-
tation and phase unwrapping methods, we had access 
to segmented and phase unwrapped data. Using sim-
ple manipulations of these data, as shown in Fig.  2, we 

Fig. 4  Demonstration of phase unwrapping of DENSE images (column a) using a semantic-segmentation U-Net, and comparison with the 
path-following method. For DENSE images with typical SNR (top two rows), the semantic segmentation U-Net correctly identified wrapped pixels 
(column b). Both the U-Net and the path-following methods performed phase unwrapping without errors (top two rows, columns c, d). For 
low-SNR data (bottom two rows), the U-Net successfully performed semantic segmentation and phase unwrapping, however the path-following 
method led to large phase-unwrapping errors, which are also depicted in wrap cycle maps (e)
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were able to generate augmented pairs of wrapped and 
unwrapped images with new wrapping patterns, pro-
viding a very effective data augmentation strategy for 
training the phase-unwrapping U-Net. This strategy led 
to a more robust and successful CNN. In addition, the 
phase-unwrapping problem could potentially be treated 
using two different approaches. One approach would be 
to train a network to directly estimate the unwrapped 
phase from the potentially-wrapped input phase, i.e., 
treating the problem as a regression problem  [42, 43]. 
Another approach, the one we took, is to estimate the 
integer number of wrap cycles at each pixel of the phase 
map by training a semantic-segmentation network to 

label each pixel according to its wrap class as defined in 
Table 1  [35, 44–46]. While both approaches are reason-
able, we selected the semantic-segmentation approach 
because, by recognizing DENSE phase wrap patterns, we 
reasoned that the method may be effective even for low-
SNR images; furthermore, the regression output does not 
apply any constraints to the output phase so that the net-
work may yield unrealistic values. Our evaluation dem-
onstrated the superiority of the semantic-segmentation 
phase-unwrapping network compared to path-follow-
ing for low-SNR data. We did not directly compare the 
semantic-segmentation phase-unwrapping CNN to a 

Fig. 5  Example end-systolic circumferential strain (Ecc) maps (left column) and segmental (middle column) and global (right column) 
circumferential strain–time curves from a healthy subjects (a) and a heart failure patient (b) are shown. For these example mid-ventricular slices, 
close agreement is seen when comparing the DL-based fully-automatic method and the conventional user-assisted method
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Fig. 6  Correlation (left) and Bland–Altman (right) plots for global (a) and segmental (b–d) circumferential strains at end systole of basal (b), 
mid-ventricular (c), and apical slices (d) computed using the conventional user-assisted and the fully-automated DL methods
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CNN for direct phase estimation. Such a comparison 
could be performed in the future.

Prior work has demonstrated accurate analysis of 
DENSE images by segmenting the myocardium using 
just three manually-drawn contours instead of con-
touring all cardiac phases  [47]. However, experience 
with this simplified method is limited to one site and a 
relatively small number of patients compared to meth-
ods that contour all cardiac phases, which have been 
used by many sites and applied to more patients. Also, 
the simple method relies on an accurate end-diastolic 
endocardial contour, which can be challenging to delin-
eate because DENSE has poor blood-myocardium 
contrast at this particular cardiac phase. In addition, 
we had concerns that DL-based phase unwrapping 
may perform poorly using the suboptimal endocardial 
contours of the simplified method. For these reasons, 
we segmented all cardiac phases, and achieved good 
results. Lastly, we note that our DL methods provide 
a superset of the contours needed for the simplified 
method, so that a DL-based simplified method could be 
investigated.

While other strain imaging methods may provide 
reliable and reproducible global strain values and are 
well-suited to automatic DL-based analysis  [20, 28, 29], 
cine DENSE has shown excellent reproducibility of seg-
mental strain  [7]. Our present results build upon these 
prior findings for segmental strain, and show excellent 
agreement of DL-based fully-automated segmental 
strain with user-assisted semi-automatically computed 
segmental strain. Interestingly, our limits of agreement 
for DL automatic vs. user-assisted segmental circum-
ferential strain are better than those for DL vs. user-
assisted analysis of myocardial-tagging-based global 
circumferential strain  [29]. A potential explanation for 
the substantially better results for DENSE is that for tag 
analysis, DL is used to perform motion tracking, and 
even when trained using data from thousands of sub-
jects, there is error in motion tracking [29]. In contrast, 

for DENSE, DL is used only for segmentation and phase 
unwrapping, but DL is not used for automatic motion 
estimation. For DENSE, during data acquisition dis-
placement is encoded directly into the pixel phase, thus 
there is no need to learn motion estimation from image 
features. In essence, the motion estimation problem 
for DENSE is much simpler than for methods like tag-
ging and feature tracking, and the demands for DL to 
accomplish full automation are much less.

This study focused on results for circumferential strain 
and not for radial strain. There are fewer pixels radially 
across the LV wall in short-axis images than circumfer-
entially. For this reason, methods like DENSE and tag-
ging are less accurate and reproducible for the estimation 
of radial strain compared to circumferential strain, and 
essentially all clinical applications of short-axis DENSE 
(and tagging) find that circumferential strain is diag-
nostically or prognostically useful, whereas radial strain 
does not perform as well. Accordingly, in our assessment, 
circumferential strain is emerging as an important bio-
marker in CMR, whereas radial strain is not.

Our study has limitations. We trained and evalu-
ated our methods for short-axis cine DENSE data from 
multiple centers and different field strengths (1.5  T and 
3  T), but from a single manufacturer. In the future, the 
networks may be trained using long-axis cine DENSE 
data to compute longitudinal strain and using data from 
other manufacturers if they provide the DENSE pulse 
sequence. Also, all the training data were manually con-
toured by just one expert reader. In the future we will 
have different readers perform contouring and we will 
retrain the networks so that they will be more general-
ized. Another limitation is that we trained the phase-
unwrapping network to handle one cycle of phase wrap; 
however, occasionally we have observed DENSE images 
with two cycles of phase wrap. Future work can train 
the network for this case. It is worth mentioning that 
our data augmentation method for phase manipulation 
may be particularly useful for this case, as very few real 

Table 3  Mean and  variance of  mid-ventricular segmental circumferential strain (Ecc) obtained using the  conventional 
user-assisted and deep learning (DL)-based fully-automatic methods

Segment 1: anteroseptal, segment 2: inferoseptal, segment 3: inferior, segment 4: inferolateral, segment 5: anterolateral, segment 6: anterior

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6

Mean Ecc
(user-assisted)

− 0.13 ± 0.06 − 0.12 ± 0.05 − 0.15 ± 0.07 − 0.16 ± 0.09 − 0.15 ± 0.07 − 0.15 ± 0.06

Mean Ecc
(automated DL)

− 0.13 ± 0.06 − 0.12 ± 0.06 − 0.15 ± 0.07 − 0.16 ± 0.09 − 0.16 ± 0.08 − 0.15 ± 0.06

Variance of Ecc
(user-assisted)

1E–4 ± 1E–4 6E–4 ± 8E–4 1E−3 ± 2E−3 9E−4 ± 7E−4 5E−4 ± 5E−4 8E−4 ± 1E−3

Variance of Ecc
(automated DL)

3E−4 ± 3E−4 6E−4 ± 5E−4 1E−3 ± 2E−3 1E−3 ± 1E−3 5E−4 ± 3E−4 8E−4 ± 1E−3
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datasets have two cycles of phase wrap. Moreover, in this 
study, we did not intentionally include training and test-
ing datasets with artifacts due to respiratory motion or 
aliasing, or use images where the heart is not centered in 
the field of view. In future, we can add such datasets in 
order to develop more robust networks. Finally, although 
we obtained good results, our networks may be more 
robust if we further train them using more datasets from 
multiple sites and more heart-disease patients.

Conclusions
The present study trained CNNs to perform LV seg-
mentation, phase unwrapping, and identification of 
the anterior RV-LV insertion point for short-axis cine 
DENSE images, providing for fully-automatic global 
and segmental DENSE strain analysis with excellent 
agreement with conventional user-assisted methods. 
DL-based automatic strain analysis for DENSE may 
facilitate greater clinical use of DENSE for the assess-
ment of global and segmental strain in patients with 
cardiac disease (Additional file 1, Additional file 2).
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