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Abstract 

Background:  Secondary hyperparathyroidism is a common complication of end-stage renal disease (ESRD), which 
may be associated with cardiovascular diseases. Thus, this study aimed to explore myocardial damage using non-
contrast cardiovascular magnetic resonance (CMR) in ESRD patients undergoing hemodialysis and further investigate 
its relationship with parathyroid hormone (PTH) toxicity.

Methods:  Seventy-two adult ESRD patients receiving regular hemodialysis and 30 healthy subjects underwent CMR 
examination. Continuous CMR cine sections from the mitral valve level to the left ventricular (LV) apex in the short-
axis plane, cine series of vertical two-chamber long-axis plane, and horizontal four-chamber plane were acquired. 
Native T1 mapping was obtained using modified Look-Locker inversion recovery (MOLLI) sequences. Native T1 values 
and myocardial strain were analyzed.  Immunoreactive parathyroid hormone (iPTH) was obtained from all enrolled 
patients.

Results:  Forty (55.6%) hemodialysis ESRD patients were found to have increased iPTH levels. LV ejection fraction 
(LVEF) of both ESRD patients with targeted and increased iPTH levels was decreased compared with healthy subjects 
(55.9 ± 12.0% vs. 65.0 ± 4.5%; 51.7 ± 12.8 vs. 65.0 ± 4.5%, both P < 0.05). The mean peak radial strain (PRS), peak circum-
ferential strain (PCS), and peak longitudinal strain (PLS) were lowest in ESRD patients with increased iPTH; however, 
no significant difference was observed among these three groups. Segmentally, from base to apex, the native T1 of 
ESRD patients with increased iPTH levels tended to be higher than those with targeted iPTH and healthy subjects 
(all P < 0.05). In ESRD patients with targeted iPTH, both native T1 of basal and middle segments were significantly 
higher than normal subjects (basal, 1304 ± 41 ms vs. 1238 ± 36 ms, P = 0.001; middle, 1300 ± 43 ms vs. 1242 ± 50 ms,  
P < 0.001). Comparing global native T1 values in the three groups, ESRD patients with targeted and increased iPTH 
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Background
Secondary hyperparathyroidism is a common compli-
cation of end-stage renal disease (ESRD) with mainte-
nance hemodialysis, which begins in the earlier stages of 
chronic renal insufficiency and is shown to be deterio-
rated with declining renal function. Hyperphosphatemia, 
hypocalcemia, decreased calcium, and vitamin D recep-
tor expression, 1,25-dihydroxyvitamin D3 deficiency, 
and parathyroid hormone (PTH) resistance may partly 
play a role in the secondary hyperparathyroidism patho-
genesis [1]. Previous studies have indicated that hyper-
parathyroid disorders, including primary and secondary 
hyperparathyroidism, are risk factors for cardiovascular 
morbidity and mortality [2, 3]. Hagström et  al. demon-
strated that high PTH levels can predict nonischemic 
heart failure (HF), and higher plasma parathyroid levels 
were significantly correlated with the advanced New York 
Heart Association (NYHA) level [5]. Meanwhile, plasma 
PTH level may have a positive value in the diagnostic cri-
teria of HF [6, 7]. Several mechanisms may contribute to 
HF in high PTH circumstances, such as specific vascular 
endothelial dysfunction promotion and atherosclerosis-
induced cardiac ischemia, or direct detrimental myo-
cardial effects such as myocyte hypertrophy and fibrosis 
[5]. Some prior studies have deduced the association 
between elevated PTH levels and myocardial damage or 
even HF in patients with chronic renal insufficiency by 
investigating the B-type natriuretic peptide level, NYHA, 
myocardial infarction, or HF history, or in animal mod-
els. However, no direct evidence was acquired to prove 
a relationship between prolonged exposure to elevated 
PTH and myocardial damage measured by noninva-
sive imaging methods such as cardiovascular magnetic 
resonance (CMR). Myocardial edema, diffused myocar-
dial fibrosis, and left ventricular (LV) deformation may 
be key pathogenesis of ESRD-related myocardiopathy 
[8–12]. Thus, novel imaging biomarkers that can reli-
ably and precisely measure pathological cardiac changes 
that are strongly linked to cardiac outcomes are needed. 
CMR late gadolinium enhancement (LGE) is a common 

imaging marker for evaluating myocardial fibrosis. How-
ever, gadolinium-based CMR contrast agents may cause 
complication of nephrogenic systemic fibrosis in patients 
with ESRD [13]. Hence, gadolinium is relative contrain-
dicated for ESRD patients [14]. CMR native T1 mapping 
is a novel and non-contrast technique that can quantita-
tively measure myocardial fibrosis or myocardial edema 
[14], and myocardial strain by tissue tracking can reflect 
LV deformation, which may provide direct evaluation 
tools to assess the myocardial damage in ESRD patients. 
Therefore, this research was to explore cardiac involve-
ment by examining CMR native T1 mapping and myo-
cardial strain and further investigate the relationship 
between uremic myocardiopathy and PTH toxicity in 
ESRD hemodialysis patients.

Methods
Study subjects
A total of 100 adult ESRD hemodialysis patients were 
prospectively recruited from September 2017 to July 
2019. The inclusion criteria of ESRD patients were dete-
riorating renal function or kidney damage for more than 
3 months and stage 5 chronic kidney disease (CKD) with 
an estimated glomerular filtration rate (eGFR) of < 15 mL/
min/1.73 m2 [15]. The exclusion criteria included a clini-
cal history of diabetes and primary hypertension-induced 
ESRD (n = 8), presence of echocardiography and clinical 
history demonstrating congenital cardiac disease or pri-
mary cardiomyopathy (n = 0), X-ray angiography veri-
fied coronary artery disease (n = 5); incomplete CMR T1 
mapping data (n = 3), and poor CMR images (including 
poor cine images, n = 4; poor T1mapping images, n = 8) 
and those patients with contradictions of CMR (n = 0). 
After exclusion, 72 ESRD patients were enrolled. All 
patients with ESRD underwent hemodialysis regularly 
(twice weekly). All CMR scans were performed the day 
before dialysis. In addition, we enrolled 30 healthy indi-
viduals who had no chronic systemic diseases, diabetes 
mellitus, hypertension, any cardiovascular diseases, fam-
ily history of cardiovascular disease, or all causes of renal 

level showed increased native T1 (1305 ± 41 ms vs. 1251 ± 49 ms, P = 0.001; 1334 ± 40 ms vs. 1251 ± 49 ms, P < 0.001, 
respectively). Native T1 values of the basal segment and global native T1 were moderately associated with iPTH 
(r = 0.4, P < 0.001; r = 0.5, P < 0.001). Multiple linear regression analysis showed that global native T1 values (beta = 1.0, 
P = 0.01) were independently associated with iPTH.

Conclusions:  Elevated iPTH level was associated with and was an independent risk factor for myocardial damage in 
ESRD patients undergoing maintenance hemodialysis.

Trial registration: Chinese Clinical Trial Registry (http://www.chict​r.org.cn/index​.aspx) ChiCTR-DND-17012976, 
13/12/2017, retrospectively registered.

Keywords:  Secondary hyperparathyroidism, End stage renal disease, Native T1 mapping, Cardiovascular magnetic 
resonance
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diseases. All patients and healthy controls underwent 
CMR imaging.

Fasting venous blood from patients with ESRD was 
drawn for routine blood examination, biochemical indi-
cators, and uremic toxins. The eGFR of each ESRD 
patient was calculated with serum creatinine using the 
CKD-Epidemiology Collaboration equation [16]. All 
patients were treated symptomatically. Correction of 
hypocalcemia and hyperphosphatemia was performed if 
hypocalcemia and hyperphosphatemia occurred. Active 
vitamin D was used to reduce PTH appropriately.  Immu-
noreactive  PTH (iPTH) was also obtained using the 
Allegro method. ESRD patients were classified into two 
groups by reaching the therapy target of iPTH or not. 
The therapeutic plasma iPTH target is 150–300  pg/mL 
according to the Kidney Disease Improving Global Out-
comes (KDIGO) guidelines [17]. Thus, ESRD patients 
were divided into patients with targeted (iPTH < 300 pg/
mL) and increased iPTH (iPTH > 300 pg/mL) cohorts.

CMR protocol
All patients were imaged supine on a 3 T CMR scanner 
(Skyra, Siemens Healthineers, Erlangen, Germany) with 
an 18-element body phased array coil. Electrocardiogram 
(ECG) and breath-hold triggers were required for each 
patient to acquire high-quality images. Stacks of retro-
spectively gated cine balanced steady state free preces-
sion (bSSFP) sequences (temporal resolution 43 ms, TR 
39.1 ms, TE 1.4 ms, slice thickness 8.0 mm, field-of-view 
280.4 × 340.0 174 × 208, flip angle 60°) from the base to 
apex were obtained in the short-axis (SAx) plane as well 
as the cine series of vertical two-chamber long-axis plane 
and horizontal four-chamber plane. Native T1 mapping 
was performed by using a modified Look-Locker inver-
sion recovery (MOLLI) sequences, the scanning model 
of native T1 MOLLI sequence was 5(3)3 (TE 1.1  ms, 
TR 346.6 ms, field of view 306.6 × 360.0 218 × 256, slice 
thickness 5.00  mm, flip angle 35°), and B0 shimming 
(targeted cardiac mode) was used to minimize the off-
resonance artifacts. The basal, middle, and apical SAx 
slices of native T1 mapping were acquired. Eight echoes 
of native T1 source imaging and color-coded native T1 
maps were generated for analysis.

Image analysis
Post-processing of all images was conducted using offline 
commercial software (cvi42, version 5.9.3, Circle Cardio-
vascular Imaging, Calgary, Alberta, Canada). For cardiac 
function assessment, LV function parameters (LV ejec-
tion fraction [LVEF], end-diastolic volume [LVEDV], 
end-systolic volume [LVESV], and stroke volume [SV], 
LV mass) were measured and automatically computed 
by manually tracing the endo- and epicardial borders 

on the stacks of SAx cine images at the end-diastolic 
and systolic phases. Blood volume and papillary mus-
cles were excluded. For myocardial strain measurement, 
sets of SAx slices and horizontal four-chamber and long-
axis two-chamber cine images were loaded into the tis-
sue tracking module. Afterwards, endo- and epicardial 
boundaries were manually drawn on the LV end-diastolic 
phase of all series, and the LV extending from the mitral 
valve to the apex was defined in both the four-chamber 
and two-chamber series. Subsequently, the anterior and 
posterior SAx reference points were placed on the inser-
tion point of the septum and LV free wall on the SAx 
plane. Blood volume and papillary muscles were also 
excluded. Myocardial strain parameters including peak 
radial strain (PRS), peak circumferential strain (PCS), and 
peak longitudinal strain (PLS) directions were calculated. 
For segmental native T1 value measurements, native 
T1 source images were loaded into the T1 calculation 
module, endo- and epicardial boundaries were manu-
ally traced, and T1 recovery curve, native T1 color maps, 
R2 maps, and native R2 values were generated (Fig.  1). 
Native T1 color maps were directly uploaded into the 
map analysis parts of this module, and native T1 values 
of basal, middle, and apical segments were automatically 
computed (Fig. 2). Then we manually draw the endo- and 
epicardial borders on the grayscale images as close to the 
myocardium layer as possible to avoid the effect of blood 
pool or epicardial and pericardial fat. Global native T1 
values across the slices were also automatically generated 
after the native T1 values of basal, middle, and apical SAx 
segments were all acquired [19].

Reproducibility of myocardial strain and native T1 value
To assess intraobserver and interobserver variabilities, 
data from  25 cases were randomly selected from both 
healthy and ESRD subjects. Intraobserver variability was 
assessed by comparing the myocardial strain parameters 
and native T1 measured by the same observer after an 
interval of 2  weeks between measurements. The inter-
observer variability was obtained by two independently 
experienced and double-blinded observers.

Statistical analysis
All statistical analyses were performed using SPSS (ver-
sion 21.0, Statistical Package for the Social Sciences, 
International Business Machines, Inc., Armonk, New 
York, USA) or GraphPad Prism (version 7.00, Graph-Pad 
Software, La Jolla, California, USA).  The Shapiro–Wilk 
test was used to examine the normality of data. Data was 
presented as the mean ± SD or median (quartile), which 
refers to the normality result. The Mann–Whitney U test 
and independent t-test were used to compare the charac-
teristics between the healthy and ESRD groups according 
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to the data’s characteristics. Comparisons among mul-
tiple groups were performed by one-way analysis of 
variance with post hoc Bonferroni correction. Bivariate 
correlations were calculated using the Pearson or Spear-
man method as appropriate. Multiple linear regression 
was performed to detect the CMR correlates of iPTH in 
myocardial damage. The reproducibility of myocardial 
strain and native T1 was assessed using the intraclass 
correlation coefficient (ICC). Two-tailed P < 0.05 were 
considered statistically significant.

Results
Baseline characteristics of ESRD patients
The demographic and biochemical indicators of the 
72 ESRD patients and 30 healthy controls are shown in 
Table 1 with no significant differences found in age, sex, 
height, and weight (all P > 0.05). The duration of renal 
insufficiency in the ESRD patients was 12–228  months, 
and the hemodialysis time was 9–228 months. A total of 
10 (13.9%) polycystic kidney disease, 52 (72.2%) primary 
glomerular nephropathy, 4 (5.6%) vasculitis, and 6 (8.3%) 

Fig. 1  Inversion recovery curves of T1 mapping. The inversion recovery curve (a) and R2 map are generated from the T1-weighted  source images 
(b). The signal intensity in each pixel of T1-weighted source images is used to fit the colored T1 (d) and R2 maps (c) that are generated

Fig. 2  Endocardial (red curve) and epicardial (green curve) delineations for the acquisition of native T1 value in basal (a), middle (b), and apical (c) 
segments
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genitourinary tuberculosis accounted for the major ESRD 
causes.

Biochemical results are listed in Table 2. Uremic toxins, 
such as creatinine and urea, in both ESRD patients with 
targeted and increased iPTH levels were both increased 
when compared with the normal ranges; however, no dif-
ference was found between the two groups. The eGFR of 
ESRD patients representing the renal glomerular filtra-
tion capacity is extremely lower than that of the normal 
reference. Thirty-two (44.4%) ESRD patients had reduced 
calcium   and increased magnesium levels compared to 
the normal reference. Furthermore, 35 (48.6%) patients 

had serum phosphorus abnormality. The iPTH range 
is 44–2964 (mean, 547 ± 577). Moreover, 32 (44.4%) 
patients were found to have targeted iPTH (normal range 
150–300 pg/mL), and 40 (55.6%) ESRD patients still had 
increased iPTH levels. However, no difference in the bio-
chemical results, such as hemoglobin, hematocrit, ure-
mic toxins, eGFR, Ca2+, and Mg2+, were found between 
ESRD patients with targeted and increased iPTH. Other-
wise, all ESRD patients were orally administered calcium 
acetate management.

Table 1  Basal characteristics of  healthy and  end-stage renal disease (ESRD) hemodialysis patients  with targeted  and 
with increased immunoreactive parathyroid hormone (iPTH)

Values are mean ± SD or n (%)

M months, BP blood pressure,  ESRD End-stage renal disease, CKD chronic kidney disease, iPTH immunoreactive parathyroid hormone

Healthy subjects
(n = 30)

ESRD with targeted iPTH 
(n = 32)

ESRD with increased 
iPTH(n = 40)

P

Age (years) 48.1 ± 11.6 58.2 ± 13.9 57.4 ± 15.0 0.06

Gender (Male, n) 12(40.0%) 12(37.5%) 15(37.5%) 0.54

Height (cm) 152.8 ± 7.9 154.8 ± 23.1 156.5 ± 6.5 0.41

Weight (kg) 53.6 ± 6.6 50.3 ± 3.2 53.3 ± 9.6 0.47

Heart rate (beats/min) 71 ± 9 81 ± 12 78 ± 13 0.08

Duration of dialysis (M) N/A 12–132 9–228 0.06

Duration of renal insufficiency (M) N/A 12–156 12–228 0.06

Systolic BP N/A 136 ± 26 142 ± 20 0.34

Diastolic BP N/A 82 ± 13 89 ± 17 0.24

Causes of ESRD

 Polycystic kidney disease (n, %) N/A 4(12.5%) 6(15.0%) N/A

  Primary glomerular nephropathy (n, %) N/A 23(44.3%) 29(55.8%) N/A

 Vasculitis (n, %) N/A 1(3.1%) 3(7.5%) N/A

 Genitourinary tuberculosis (n, %) N/A 2(6.3%) 4(10.0%) N/A

Table 2  The biochemical results

Values are mean ± SD

iPTH immunoreactive parathyroid hormone, eGFR estimated glomerular filtration rate

ESRD with targeted iPTH 
(n = 32)

ESRD with increased iPTH 
(n = 40)

P

Hemoglobin (g/L) (n range 110–160) 96 ± 13 98 ± 10 0.64

Hematocrit (%) (normal range 37–54) 0.3 ± 0.1 0.3 ± 0.1 0.17

eGFR (mL/min per 1·732 m2) (normal range 80–120) 6 ± 2 5 ± 3 0.25

Creatinine (umol/l) (normal range 53.0–140.0) 1020 ± 1658 849 ± 303 0.51

Uric acid (umol/L) (normal range 240–490) 412 ± 120 397 ± 113 0.47

Urea (mmol/L) (normal range 3–8) 21 ± 7 23 ± 9 0.38

iPTH (pg/mL) (normal range 150–300) 188 ± 71 832 ± 642 0.00

Calcium (mmol/L) (normal range 2.1–2.7) 2.1 ± 0.2 2.2 ± 0.3 0.80

Magnesium  (mmol/L) (normal range 0. 7–1.0) 1.0 ± 0.1 1.0 ± 0.1 0.89

Serum phosphorus (mmol/L) (normal range 1.5–2.1) 1.5 ± 0.5 1.8 ± 0.6 0.06
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Comparison of myocardial damages assessed using CMR
For LV function (Table  3), the LVEF of both ESRD 
patients with targeted and increased iPTH was found 
to be decreased comparing with that in healthy subjects 
(56 ± 12% vs. 65 ± 5%; 52 ± 13 vs. 65 ± 5%, both P < 0.05). 
Although no significant difference was found between 
ESRD patients with targeted and increased iPTH cohorts, 
the LVEF in patients with increased iPTH tended to be 
lower than those with targeted iPTH. For other LV func-
tion parameters, only the LVESV of ESRD patients with 
increased iPTH was enlarged. LVEDV and SV did not dif-
fer significantly between the healthy and the two ESRD 
groups. LV parameters indexed to the body surface 
area showed the same tendency. For myocardial strain 
(Table  3), the mean PRS, PCS, and PLS were lowest in 
ESRD patients with increased iPTH levels. Neverthe-
less, no significant differences were observed among the 
three groups. For native T1 mapping assessing myocar-
dial damage (Fig. 3), segmental and global native T1 val-
ues were assessed and compared. Segmentally, from the 
basal to apical segment, the native T1 values of ESRD 
patients with increased iPTH tended to be higher than 
those with targeted iPTH and healthy individuals (all 
P < 0.05). In ESRD patients with targeted iPTH, the native 
T1 of the basal and middle segments were significantly 

higher  than that in the normal subjects (1304 ± 41  ms 
vs. 1238 ± 36  ms; 1300 ± 43  ms vs. 1242 ± 50  ms, both 
P < 0.001), and the apical segment native T1 values had 
no difference in both normal and ESRD patients with tar-
geted iPTH individuals. Comparing the global native T1 
values in the three groups, ESRD patients with targeted 
and increased iPTH showed increased native T1 values 
(1305 ± 41 ms vs. 1251 ± 49 ms, P = 0.001; 1334 ± 40 ms 
vs. 1251 ± 49  ms, both P < 0.001). Meanwhile, ESRD 
patients with increased iPTH levels were also higher than 
the targeted iPTH ones for the global native T1 values 
(1334 ± 40 ms vs. 1305 ± 41 ms, P = 0.01).

The independent myocardial damage factors associated 
with iPTH
The correlation coefficients of iPTH for secondary hyper-
parathyroidism evaluation are presented in Table 4. LVEF 
was negatively correlated with iPTH (r = − 0.3, P = 0.01), 
while LVEDV and LVESV were positively correlated with 
iPTH (r = 0.2, P = 0.04; r = 0.3, P = 0.003, respectively). 
From the myocardial deformation aspect, both PRS and 
PCS were significantly correlated with iPTH (r = − 0.2, 
P = 0.04; r = 0.2, P = 0.04). By analyzing the segmental 
and global native T1, we found that the native T1 of the 
basal segment (r = 0.4, P < 0.001) and the global native 

Table 3  LV function, myocardial strain and native T1 value of ESRD with targeted iPTH and with increased iPTH

LV left ventricular, EDV end-diastolic volume, ESV end-systolic volume, EF ejection fraction, SV stroke volume, PRS peak radial strain, PCS peak circumferential strain, PLS 
peak longitudinal strain directions, BSA body surface area. Other abbreviations are the same as Tables 1 and 2

*P < 0.05 vs. normal group; #P < 0.05 vs. comparison with ESRD with targeted iPTH

Normal subjects (n = 30) ESRD with targeted iPTH (n = 32) ESRD 
with increased 
iPTH (n = 40)

LV function

 EF (%) 65.0 ± 4.5 55.9 ± 12.0* 51.7 ± 12.8*

 EDV (mL) 117 ± 31 128 ± 44 134 ± 50

 ESV (mL) 45 ± 13 60 ± 44 69 ± 47*

 SV (mL) 79 ± 17 67 ± 18 65 ± 18

 LV mass (g) 52 ± 17 85 ± 31* 90 ± 32*

 EDV/BSA (mL/mm2) 72.3 ± 20.1 83.3 ± 26.4 84.8 ± 36.3

 ESV/BSA (mL/m2) 260.0 ± 5.5 38.9 ± 26.4 43.8 ± 34.4 *

 SV/BSA (mL/m2) 48.6 ± 11.2 44.2 ± 11.6 40.3 ± 10.9*

 Mass/BSA (g/m2) 32.2 ± 11.4 54.4 ± 19.0* 56.3 ± 19.0*

Myocardial strain parameters

 PRS 43.0 ± 9.8 43.2 ± 14.9 37.6 ± 15.7

 PCS − 18.3 ± 2.1 − 17.8 ± 4.2 − 16.8 ± 5.0

 PLS − 16.5 ± 2.4 − 15.7 ± 3.7 − 14.8 ± 4.4

Native T1 value

 Basal segment 1238 ± 36 1304 ± 41* 1330 ± 43*#

 Middle segment 1242 ± 50 1300 ± 43* 1323 ± 43*#

 Apical segment 1280 ± 65 1339 ± 86 1360 ± 74*

Global 1251 ± 49 1305 ± 41* 1334 ± 40*#
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T1 (r = 0.5, P < 0.001) were moderately associated with 
iPTH, while the native T1 of the middle segment (r = 0.4, 
P = 0.001) showed mild correlation. Multiple linear 
regression analysis showed that the native T1 of global 
hearts (beta = 1.0, P = 0.01) were independently associ-
ated with iPTH, whereas myocardial strain parameters 
demonstrated no independent relationship with iPTH 
after multiple linear regression analysis.

Reproducibility and feasibility of myocardial strain 
and native T1 value
LV basal, middle, and apical myocardial native T1 
showed excellent interobserver ICC (ICC = 0.994, 0.997, 
and 0.998, respectively) and intraobserver agreement 

(ICC = 0.993, 0.995, and 0.997, respectively). For the 
global myocardial native T1, the interobserver ICC 
was 0.999 (95%  CI 0.996–1.000), and the intraobserver 
ICC was 0.998 (95% CI 0.993–0.999). Myocardial strain 
parameters also showed excellent interobserver ICC 
(PRS, 0.997; PCS, 0.997; PLS, 0.970) and intraobserver 
ICC (PRS, 0.917; PCS, 0.991; PLS, 0.958).

Discussion
As a worldwide public health problem due to its associa-
tion with multiple comorbidities, CKD is highly associ-
ated with cardiovascular events, mortality, and high 
medical cost burden [19]. CKD morbidity ranged from 
8 to 16% in the population [20]. Projections from the 

Fig. 3  Represented cases of a native T1 map in end-stage renal disease (ESRD) patients. The first row shows that the native T1 values of basal (a 
native T1 = 1438 ms), middle (b native T1 = 1467 ms), and apical (c native T1 = 1464 ms) segments of a patient with increased iPTH (iPTH = 931 pg/
mL) are higher than those with targeted iPTH [(second row, iPTH = 91 pg/mL); basal (d), native T1 = 1302 ms; middle (e), native T1 = 1296 ms; 
apical (f), native T1 = 1296 ms] and normal control (third row) [basal (g), native T1 = 1229 ms; middle (h), native T1 = 1232 ms; apical (i), native 
T1 = 1215 ms]
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Global Health Observatory suggest that the CKD mortal-
ity rate will continue to increase from 12.2 to 14 deaths 
per 100,000 people by the year 2030 [21]. Although sev-
eral studies on various populations have reported that 
low eGFR and high uremic toxicity factors are associated 
with cardiovascular diseases, cardiovascular mortality 
was still about twice higher in patients with stage 3 CKD 
and three times higher with stage 4 CKD. Additionally, 
the risk of HF is approximately doubled in patients with 
eGFR < 60  mL/min/1.73  m2 [22–24]. Cardiovascular 
mortality is estimated to be significantly higher in people 
with an eGFR < 60  mL/min/1.73 m2 [22]. Cardiovascu-
lar risks cause most of the deaths in ESRD patients with 
severe renal deficiency. Multiple risk factors account for 
cardiovascular disease in CKD patients. In patients with 
severe CKD, besides the traditional risk factors such as 
hypertension, dyslipidemia, Na+ overload, Ca2+ and 
serum phosphorus abnormalities, and chronic inflamma-
tion, cardiovascular disease in CKD may also be driven 
by specific risk factors including anemia and malnu-
trition, hormonal imbalances, soft tissue calcification, 
erythropoietin resistance, renal replacement therapy 
(RRT)-related electrolyte imbalance, and high PTH level. 
In all the risk factors, secondary hyperparathyroidism 
has been linked with mineral bone disorders as well as 
increased cardiovascular mortality, which may be criti-
cal factors for uremic cardiomyopathy. PTH influences 
LV function in chronic hemodialysis patients, and plasma 
PTH reduction is beneficial to the uremic heart [25]. 

PTH lowering has been focused on as a treatment target 
for decades, and the effect of high PTH level on ESRD 
has been in research for a long time [26]. Most of the pre-
vious studies focused on the association of PTH and min-
eral bone disease; however, few studies have mentioned 
that secondary hyperparathyroidism may contribute 
to the cardiovascular complications of CKD. Van et  al. 
found that higher PTH concentrations may be associated 
with the increased risk of cardiovascular events through 
a meta-analysis [27]. PTH may contribute to four major 
cardiovascular effects, including contractile disturbance, 
cardiomyocyte hypertrophy, and cardiac interstitial 
fibrotic and vasodilator effects. Although only the ani-
mal model by parathyroidectomy and invasive patho-
logical examination demonstrated these correlations, 
very little detail and direct evidence about the inner con-
nection of increased PTH and cardiac changes by non-
invasive methods in CKD patients have been previously 
demonstrated.

In our study, iPTH levels in ESRD patients were much 
higher than the normal range. Ca2+ and serum phospho-
rus abnormalities were also found in the ESRD cohort. 
The iPTH of 32 patients was within the normal range 
by routine calcitriol and hemodynamic dialysis therapy. 
We found that LVEF was decreased, but still preserved 
in ESRD patients with either targeted iPTH or increased 
iPTH levels. Although no myocardial strain deteriora-
tion was detected in both ESRD cohorts, on normal 
iPTH, native T1 of the basal and middle segments in 
the LV were significantly increased. The global native 
T1 in subjects with both targeted and increased iPTH 
was higher than that in normal subjects, which may 
lead to the assumption that myocardial tissue deteriora-
tion happens prior to myocardial deformation. Previous 
studies have reported LV mechanical dyssynchrony and 
microvascular dysfunction detected by single-photon 
emission computed tomography (SPECT), and regadeno-
son SPECT myocardial perfusion imaging also provided 
a significant prognostic value in ESRD patients [28–31]. 
However, SPECT, especially regadenoson SPECT, has 
some limitations due to the utilization of vasodilators and 
contrast in ESRD patients with reduced clearance and 
longer exposure to the drug and contrast [32]. For the 
CMR technique, some studies have shown that native T1 
assessed by CMR acquires samples from the longitudinal 
magnetization perturbation and extracts the real myo-
cardial T1 without gadolinium contrast [33, 34]. Thus, 
native T1 mapping is currently explored as a relatively 
precise diagnostic modality in a wide range of heart dis-
eases, including diffuse myocardial tissue lesions, such as 
ESRD patients [33]. Conversely, gadolinium increases the 
risk of nephrogenic systemic fibrosis  making non-con-
trast native T1 mapping more suitable for CKD patients. 

Table 4  CMR correlates of  iPTH by  bivariate correlation 
analysis and multiple linear regression

All abbreviations were the same as Tables 1–3

*P < 0.05

Bivariate 
correlation

Multiple linear 
regression

R Beta P

LV function parameters

 EF (%) − 0.3* − 0.1 0.73

 EDV (mL) 0.2* 0.2 0.72

 ESV (mL) 0.3* 0.02 0.97

 SV (mL) 0.02 N/A N/A

Myocardial strain parameters

 PRS (%) − 0.2* 0.3 0.28

 PCS (%) 0.2* 0.1 0.42

 PLS (%) 0.2 N/A N/A

Native T1 values

 Basal segment (ms) 0.4* − 0.02 0.92

 Middle segment (ms) 0.4* − 0.5 0.09

 Apical segment (ms) 0.2 N/A N/A

Global (ms) 0.5* 1.0 0.01
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Increased native T1 account for a few characterizing tis-
sues, such as edema, inflammation, and fibrosis, affecting 
the interstitial space [35]. Many studies have demon-
strated that native T1 has shown an important prognostic 
significance in discriminating disease, especially in those 
with diffuse myocardial damage [36]. Thus, compared 
with SPECT, native T1 may provide more information, 
for instance edema, inflammation, or fibrosis, besides the 
myocardial blood flow, and non-utilization of contrast is 
safer for ESRD patients.

CKD contributing to decreased cardiac function, car-
diac hypertrophy, and increased risk of adverse car-
diovascular events is referred to as chronic renocardiac 
syndrome. Diffuse interstitial edema, inflammation, and 
fibrosis always occur in CKD patients, which can mani-
fest as increased native myocardial T1 times [37]. We 
found that native T1 values were higher in patients with 
targeted and increased iPTH, and increased iPTH val-
ues seem more serious. Interestingly, native T1 mapping 
detecting myocardial damage was significantly associ-
ated with and demonstrated to be significant correlates 
of iPTH in this study, indicating that myocardial dam-
age does exist in ESRD patients. Moreover, secondary 
hyperparathyroidism may indeed contribute to uremic 
myocardial changes. This result was consistent with the 
previous results of animal experiments on the increased 
PTH-induced cardiac fibrosis [38, 39]. Additionally, 40 
patients presented with persistently high iPTH levels, 
revealing that treatment with conventional hemodialysis 
and medications seems limited. Meanwhile, the sever-
ity of secondary hyperparathyroidism increases with 
the decline in renal function. iPTH levels > 50 pg/mL in 
patients with CKD stages 3 and 4 are associated with an 
escalating combined risk of death or RRT [40]. In ESRD 
patients with targeted iPTH, native T1 is also increased. 
Thus, early and dynamic detection of myocardial damage 
by noninvasive imaging tools and early treatment of sec-
ondary hyperparathyroidism are particularly important.

Limitations
Although this research has demonstrated that increased 
iPTH levels were associated with myocardial damage in 
ESRD patients evaluated by CMR native T1, some limi-
tations still exist. First, all enrolled patients in this study 
had ESRD and lacked the effect of iPTH on the myocar-
dium in early-stage CKD. Second, we could not acquire 
an endocardial biopsy. Thus, direct association of native 
T1 with histologic abnormalities is lacking. Since several 
studies have demonstrated that native T1 plays a critical 
role in measuring myocardial edema and fibrosis [34], 
T2 mapping for the detection of edema may be further 
analyzed to elucidate the pathology behind increased T1 
values, whether it is due to edema or fibrosis. In addition, 

no significant difference in myocardial strain was found 
in both ESRD groups and the normal group; however, the 
PRS of ESRD patients with targeted iPTH was found to 
be slightly increased, while the other parameters showed 
a decreasing tendency. Since multiple factors may cause 
the different appearance of myocardial strain in ESRD 
patients [41], studies with large sample sizes and different 
stages of CKD are needed to further explore the evolu-
tion progress of myocardial strain.

Conclusions
Myocardial damage was found to be increased in ESRD 
patients with both normal and increased iPTH levels fol-
lowing conventional therapy. In addition, consistently 
high iPTH levels may be independently associated with 
myocardial damage in ESRD patients.
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