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Abstract 

Background:  Progressive cardiomyopathy accounts for almost all mortality among Duchenne muscular dystrophy 
(DMD) patients.‍ Thus, our aim was to comprehensively characterize myocardial involvement by investigating the het‑
erogeneity of native T1 mapping in DMD patients using global and regional (including segmental and layer-specific) 
analysis across a large cohort.

Methods:  We prospectively enrolled 99 DMD patients (8.8 ± 2.5 years) and 25 matched male healthy controls 
(9.5 ± 2.5 years). All subjects underwent cardiovascular magnetic resonance (CMR) with cine, T1 mapping and late 
gadolinium enhancement (LGE) sequences. Native T1 values based on the global and regional myocardium were 
measured, and LGE was defined.

Results:  LGE was present in 49 (49%) DMD patients. Global native T1 values were significantly longer in LGE-positive 
(LGE +) patients than in healthy controls, both in basal slices (1304 ± 55 vs. 1246 ± 27 ms, p < 0.001) and in mid-
level slices (1305 ± 57 vs. 1245 ± 37 ms, p < 0.001). No significant difference in global native T1 was found between 
healthy controls and LGE-negative (LGE−) patients. In segmental analysis, LGE + patients had significantly increased 
native T1 in all analyzed segments compared to the healthy control group. Meanwhile, the comparison between 
LGE− patients and healthy controls showed significantly elevated values only in the basal anterolateral segment 
(1273 ± 62 vs. 1234 ± 40 ms, p = 0.034). Interestingly, the epicardial layer had a significantly higher native T1 in LGE− 
patients than in healthy controls (p < 0.05), whereas no such pattern was noticed in the global myocardium. Epicardial 
layer native T1 resulted in the highest diagnostic performance for distinguishing between healthy controls and DMD 
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Background
Duchenne muscular dystrophy (DMD), an X-linked mus-
cle degenerative disorder caused by deficient or defec-
tive synthesis of dystrophin protein, is the most common 
inherited muscular dystrophy and affects both skeletal 
muscle and myocardial muscle. Due to improved ventila-
tory assistance and supported treatments, cardiomyopa-
thy has become the main cause of death in DMD patients 
[1, 2]. Histopathological studies have revealed that sub-
epicardial muscle degeneration, fibrosis, and fatty infil-
tration are the most common forms of myocardial injury 
in DMD‍ [3, 4]. In order to postpone the onset of cardiac 
remodeling and subsequent dysfunction, it is important 
to detect myocardial changes early, when they are still 
at a subclinical level [5]. Cardiovascular magnetic reso-
nance (CMR) offers an accurate and highly reproducible 
technique for assessing left ventricular (LV) function 
together with the ability to detect focal fibrosis based 
on late gadolinium enhancement (LGE) imaging, which 
plays an increasingly vital role in the diagnosis and clini-
cal care of boys with DMD-associated cardiomyopathies 
[6] and is thus recommended as the preferred noninva-
sive imaging modality for patients with DMD [7]. How-
ever, LGE imaging has several underlying limitations in 
its ability to display subtle or diffuse myocardial fibrotic 
changes due to the lack of regional differences in signal 
intensity [8]. Native T1 mapping, a novel CMR paramet-
ric mapping technique, has provided a potential tool for 
quantifying tissue alterations without the administration 
of contrast medium and assessing early, subclinical car-
diac involvement in focal and diffuse myocardial fibrosis 
[9–11]. Increased myocardial native T1 in patients with 
DMD has been described in previous studies [12–15]. 
However, those studies used older DMD patients, and 
were focused only on the global myocardium of the 
mid-ventricle rather than a systematic quantification of 
layer-specific native T1 ranging from the epicardial to 
the endocardial layer. Thus, the aim of our study was to 
comprehensively characterize myocardial involvement by 
investigating the heterogeneity of native T1 mapping in a 
large young DMD population using global and regional 
(including segmental and layer-specific) analysis and to 
further assess the feasibility and specificity of native T1 

mapping in the early detection of myocardial involve-
ment in DMD.

Materials and methods
Study population
From July 2018 to January 2020, 99 DMD patients were 
prospectively recruited for this Institutional Review 
Board (IRB)-approved study. DMD diagnosis was 
confirmed by genetic testing and/or skeletal muscle 
pathology in all patients. The exclusion criteria were 
claustrophobia; severe arrhythmia; contraindications for 
the use of contrast media, such as severe renal insuffi-
ciency; and inability to cooperate during CMR. Twenty-
five age-matched healthy males undergoing CMR with 
gadolinium for a separate clinical indication with normal 
results and no evidence of cardiovascular disease were 
included as a control group. Their indications for CMR 
were: chest pain (N = 9); syncope (N = 4); occasional 
atrial premature beats (N = 5); and poor image quality 
on prior echocardiogram (N = 7). Every subject or guard-
ian provided written informed consent form before CMR 
examination.

CMR imaging protocol
CMR scanning was conducted using a clinical 3  T 
CMR scanner (MAGNETOM Skyra, Siemens Health-
ineers, Erlangen, Germany) equipped with an 18-chan-
nel receiver coil. CMR protocols included cine, T1 
mapping, and LGE  sequences. In order to quantify 
cardiac structure and function, 8–12 continuous sec-
tions were acquired from the mitral valve level to the 
LV apex in the short-axis view with a balanced steady-
state free precession pulse (bSSFP) sequence (echo time 
[TE] = 1.48  ms; repetition time [TR] = 3.42  ms; flip 
angle = 34°; slice thickness 8  mm; matrix = 126 × 224 
pixels; field of view [FOV] = 300 × 241  mm2). Matched 
T1 mapping and LGE imaging sequences were per-
formed at three standard short-axis levels (basal, middle, 
and apical) in the LV. Prior to contrast administration, 
native T1 mapping was performed using a modified 
Look-Locker inversion recovery (MOLLI) sequence 
with motion correction (MOCO) [16]. The scanning 
model of MOLLI sequence was 5(3)3 (TE = 1.11  ms; 

patients in receiver operating curve analyses (area under the curve [AUC] 0.84 for basal level and 0.85 for middle level) 
when compared to global native T1 and endocardial layer native T1.

Conclusions:  Myocardial regional native T1, particularly epicardial native T1, seems to have potential as a novel 
robust marker of very early cardiac involvement in DMD patients.

Trial registration: Chinese Clinical Trial Registry (http://​www.​chictr.​org.​cn/​index.​aspx) ChiCTR1800018340, 09/12/2018, 
Retrospectively registered.
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TR = 2.71  ms; flip angle = 35°; slice thickness = 6  mm; 
matrix = 139 × 192 pixels; FOV = 280 × 224 mm2). LGE 
images were obtained 5–8  min after intravenous injec-
tion of gadolinium (Gadovist, Bayer Healthcare, Berlin, 
Germany) at a dose of 0.15  mmol per kg body weight 
by using a single-shot phase-sensitive inversion recov-
ery (PSIR) sequence (TE = 1.09  ms; TR = 2.55  ms; flip 
angle = 55°; slice thickness = 6  mm; matrix = 116 × 192 
pixels; FOV = 340–360 × 340–360 mm2). All images were 
acquired during breath holding in end-expiration, and 
electrocardiographic gating was used.

Image analysis
CMR analysis was performed offline by two experienced 
clinicians using commercially available software (cvi42; 
Circle Cardiovascular Imaging Inc., Calgary, Alberta, 
Canada). The LV function parameters, including LV 
ejection fraction (LVEF), end-diastolic volume index 
(EDVI), end-systolic volume index (ESVI), and LV mass 
index (LVMI), were derived by defining the contours of 
the endo- and epicardial borders on the short-axis cine 
images according to current guidelines [17]. LV dys-
function was defined as LVEF < 55%. Twelve segments 
(segments 1–12) of the LV (excluding the apical slice), 
adapted from the American Heart Association (AHA) 
17-segment model [18], were analyzed through native T1 
and LGE images. The apical slice was disregarded due to 
high artifact rate and the known error by partial volume. 
Using the cvi42 T1 characterization module, endocardial 
and epicardial borders were drawn on basal and middle 
ventricular T1 parametric maps for each patient. The 
anterior and posterior right ventricular (RV) insertion 
point was then defined to automatically divide the basal 
and middle ventricular slices into 6 segments and calcu-
late segmental native T1 values. After removal of any seg-
ments affected by artifacts, the average T1 time for the 
global myocardium was calculated from the mean of the 

remaining segments. We apply an offset option of 50% by 
modifying the border contour towards the opposite bor-
der to generate native T1 of endo- and epicardial layers 
(see Fig. 1). We didn’t exclude areas of LGE as described 
recently [19]. As a test for intraobserver variability, one 
clinician performed all native T1 analyses a second 
time after a 1-month delay. The second radiologist, who 
was blinded to the results of the first observer, reana-
lyzed all the images to assess interobserver variability. 
The presence and pattern of LGE were visually assessed 
by a single expert reader according to the AHA 17-seg-
ment model. The number of affected segments was also 
indicated. LGE was deemed negative or positive in each 
of myocardial segments by visual rating and performed 
independent from the T1 analysis. A subject was consid-
ered to have cardiac involvement when LGE was present 
in at least one myocardial segment. If no enhancement 
was observed, then the subject was defined to have DMD 
without cardiac involvement [20]. Additionally, in DMD 
patients with cardiac involvement, the short-axis seg-
ments in the same slice position were further classified as 
positive segments or negative segments according to the 
presence/absence of LGE in each segment.

Statistical analysis
Statistical analyses were performed using SPSS software 
(version 22.0 for Windows; Statistical Package for the 
Social Sciences, International Business Machines, Inc., 
Armonk, New York, USA) and MedCalc (version 19.7, 
MedCalc Software; Mariakerke, Belgium). Continuous 
variables are presented as the mean value ± standard 
deviation (SD). Categorical variables are expressed as 
the frequency and percentage. Normality was evaluated 
using the Kolmogorov–Smirnov test, and homogeneity of 
variance was assessed using Levene’s test. Student’s t-test 
was used to compare normally distributed characteris-
tics between DMD and controls. The demographics of 

Fig. 1  An example of outlining the regions of interest to obtain average native T1 values for the global myocardium (A), epicardial layer (B) and 
endocardial layer (C)
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DMD patients and healthy controls were compared using 
a Wilcoxon rank-sum test. The CMR results of DMD 
patients and healthy controls were compared using an 
independent t-test. One-way ANOVA was used to com-
pare the CMR results among DMD subgroups and the 
healthy control group, and the Bonferroni correction was 
used for to adjust the post hoc pairwise tests for multi-
ple comparisons. A paired t-test was used to compare the 
native T1 values of the endocardial and epicardial layers. 
Receiver operating characteristic (ROC) analysis with 
area under the curve (AUC) was used to identify the best 
discriminating parameter in the myocardial layers to dif-
ferentiate between DMD patients and controls. Interob-
server and intraobserver variability were calculated using 
the intraclass correlation coefficient (ICC). All tests were 
2-sided, and a p-value < 0.05 was considered statistically 
significant.

Results
Patient characteristics
The baseline characteristics of the patients are shown 
in Table 1. There were 99 DMD patients and 25 healthy 
controls. The mean age of the DMD patients was 
8.8 ± 2.5 years (range 6–19 years), whereas the mean age 
of the controls was 9.5 ± 2.5  years (range 6–14  years). 

All subjects in both groups were males. We found three 
significant demographic differences between the two 
groups: DMD patients were shorter and had faster rest-
ing heart rates and lower body surface area (BSA) values 
than healthy controls  (Table  1). Fourteen DMD sub-
jects had an abnormal CMR-derived LVEF, defined as 
LVEF < 55%. DMD patients showed significantly lower 
LVEDVI, LVESVI and LVMI than healthy controls.

LGE presence
Among the 99 DMD patients, LGE was found to be present 
in 49 subjects (49%), defined as the LGE-positive (LGE +) 
group. The remaining 50 patients (51%) were assigned to 
the LGE-negative (LGE−) group. The baseline charac-
teristics of LGE + patients were similar to those of LGE− 
patients, with the following exceptions: LGE + patients 
had a lower LVEF (57.3 ± 8.6% vs. 62.7 ± 6.4%, p = 0.010) 
and a significantly higher EDVI (p = 0.008) and ESVI 
(p < 0.001) than LGE− patients (Table 1). Figure 2A shows 
the presence and distribution of LGE + segments in all 
LGE + patients. Overall, LGE was mostly distributed in 
the subepicardial region, followed by the subendocardial 
region. In addition, LGE was more prevalent in the free 
wall segments than in the septal segments. At the basal 
and middle ventricle, the most frequently involved LV 

Table 1  Baseline characteristics and left ventricle characteristics

Values are presented as mean ± standard deviation or n (%)

ACEI angiotensin converting enzyme inhibitor, BMI body mass index, BSA body surface area, EF ejection fraction, EDVI end-diastolic volume index, ESVI end-systolic 
volume index, LVMI left ventricular mass index

*p < 0.05 vs. controls
& p < 0.05 vs. DMD LGE + 

Controls
N = 25

All DMD patients 
N = 99

DMD LGE + 
N = 49

DMD LGE−
N = 50

Baseline characteristics

Age, years 9.5 ± 2.5 8.8 ± 2.5 9.2 ± 2.7 8.5 ± 2.4

Males (%) 25 (100%) 99 (100%) 49 (100%) 50 (100%)

Height, cm 135.7 ± 17.6 125.8 ± 12.5* 127.8 ± 12.3 124.2 ± 12.5*

Weight, kg 32.5 ± 10.5 28.5 ± 9.8 29.2 ± 8.9 27.9 ± 10.1

BMI, kg/m2 17.2 ± 2.5 17.5 ± 3.7 17.4 ± 3.2 17.6 ± 4.1

BSA, m2 1.8 ± 0.3 1.6 ± 0.2* 1.7 ± 0.2 1.6 ± 0.2*

Medications

 Corticosteroids 0 60 (60%) 34 (69%) 26 (52%)

 ACEI 0 19 (19%) 10 (20%) 9 (18%)

 β-blocker 0 20 (20%) 13 (27%) 7 (14%)

 Diuretic 0 8 (8%) 6 (12%) 2 (4%)

Left ventricle characteristics

Heart rate, bpm 80.9 ± 13.7 95.9 ± 14.8* 92.3 ± 18.6* 97.7 ± 16.6*

EF, % 62.0 ± 3.9 60.1 ± 8.0 57.3 ± 8.6* 62.7 ± 6.4&

EDVI, mL/m2 53.0 ± 10.7 43.5 ± 10.2* 46.9 ± 10.8 40.3 ± 8.7*&

ESVI, mL/m2 20.2 ± 4.9 17.3 ± 5.2* 19.9 ± 5.3 15.0 ± 3.8*&

LVMI, g/m2 30.1 ± 8.0 23.9 ± 6.0* 25.4 ± 6.1* 22.5 ± 5.6*
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segments were the anterolateral [n = 77 (79%)] and infe-
rolateral [n = 71 (72%)] segments. The less commonly 
involved segments were the anteroseptal [n = 22 (22%)] 
and inferoseptal segments [n = 24 (24%)].

Global myocardial native T1 in different subcohorts 
of DMD patients
Global native T1 values were significantly higher in 
LGE + patients than in controls, both in the basal slices 
(1304 ± 55 vs. 1246 ± 27  ms, p < 0.001) and in the mid-
level slices (1305 ± 57 vs. 1245 ± 37 ms, p < 0.001). A sig-
nificant difference between LGE + and LGE− patients 
remained in the basal and mid-level slices (p = 0.002 
and p = 0.021, respectively). Although no significant dif-
ference was found, the global native T1 values of LGE− 
patients still tended to be higher than those of controls in 

Fig. 2  Schematic representation of bull’s-eye plots for the analyzed basal and middle short-axis slices, showing the following: A The presence 
and distribution of late gadolinium enhancement (LGE) -positive segments for all boys with Duchenne’s muscular dystrophy (DMD) with LGE +. 
The outer ring represents the basal segments, and the inner ring represents the midventricular segments. Free wall segments (orange) were 
more commonly affected by LGE than septal segments (gray). B Segmental native T1 values (means ± SD) in controls (left), DMD patients with 
LGE + (middle) and DMD patients with LGE− (right). Segments with abnormal values compared to healthy controls are marked with asterisks. 
Segments with abnormal values compared to LGE + patients are marked with the symbol &. (*p < 0.05 vs. controls; &p < 0.05 vs. DMD with focal 
fibrosis.)

both the basal (1246 ± 28 vs. 1268 ± 54 ms, p = 0.349) and 
middle slices (1245 ± 35 vs. 1277 ± 48 ms, p = 0.051).

Regional myocardial native T1 heterogeneity: layer‑specific 
native T1
Native T1 values in different layers are depicted in 
Table  2. In the healthy control group, there was no dif-
ference in native T1 between the epicardial and endo-
cardial layers. For LGE + patients, epicardial native T1 
was significantly higher than endocardial native T1 at 
the basal level (1315 ± 56 vs. 1292 ± 59  ms, p < 0.001), 
but there was no significant difference at the mid-level 
(1307 ± 55 vs. 1303 ± 61  ms, p = 0.348). The same was 
observed in LGE– patients. Interestingly, the epicardial 
layer had a significantly higher native T1 in LGE− sub-
jects than in healthy controls, which was not noticed in 
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Table 2  Comparison of global and layer-specific native T1 values

Endo- endocardial layer, Epi- epicardial layer, Global global myocardium

*p < 0.05 vs. controls
& p < 0.05 vs. DMD LGE + 

Controls DMD LGE + (N = 49) DMD LGE− (N = 50)

Basal

Global 1246 ± 27 1304 ± 55* 1268 ± 54&

Epi- 1248 ± 26 1315 ± 56* 1277 ± 54*&

Endo- 1245 ± 28 1292 ± 59* 1261 ± 56&

Mid-level 

Global 1245 ± 37 1305 ± 57* 1277 ± 48&

Epi- 1247 ± 36 1307 ± 55* 1282 ± 46*&

Endo- 1244 ± 37 1303 ± 61* 1276 ± 51&

the global myocardium (Fig. 3). Figure 4 shows examples 
of native T1 maps with corresponding LGE images. The 
ROC curves plotted in Fig. 5 show that epicardial native 
T1 outperformed global and endocardial native T1 at dis-
tinguishing between healthy controls and DMD patients 
at both the basal level (AUC = 0.84) and the mid-level 
(AUC = 0.85).

Regional myocardial native T1 heterogeneity: segmental 
native T1
27/1188 segments of 99 patients and 3/300 segments 
of 25 healthy control  subjects had to be excluded due 
to artifacts and incorrect motion correction. The mean 
native T1 value of each segment is presented in Fig. 2B. 
LGE + patients had significantly increased native T1 in 
all analyzed segments in comparison with the healthy 
control population. The T1 elevation was distributed 
mainly in the lateral region. Note that even in septal seg-
ments with a low prevalence of LGE, the average native 
T1 of LGE + patients was elevated compared with that 
of controls. However, LGE− patients showed signifi-
cantly higher native T1 than healthy controls only in the 
basal anterolateral segment (1273 ± 62 vs. 1234 ± 40 ms, 
p = 0.034). In addition, the segmental native T1 of 
LGE + patients was higher than that of LGE− patients for 
the inferior, inferolateral and anterolateral segments in 
both the basal and middle slices (p < 0.05). We also ana-
lyzed all AHA segments of each patient (a composite of 
the basal and middle ventricular slices) and further classi-
fied the segments in DMD patients with cardiac involve-
ment as positive or negative segments according to the 
presence/absence of LGE. Our further analysis revealed 
substantially increased native T1 values not only in 
LGE-positive segments (1333 ± 69 ms) but also in LGE-
negative segments (1286 ± 66 ms) of DMD patients with 
cardiac involvement compared to both DMD patients 
without cardiac involvement (1270 ± 64 ms) and controls 
(1246 ± 45 ms) (Fig. 6).

Reproducibility analysis
The intra- and interobserver reliability of the measure-
ment of the global native T1, epicardial native T1, and 
endocardial native T1 are shown in Table  3. Native T1 
mapping showed good reproducibility (ICC = 0.968–
0.996) in measuring myocardial involvement in DMD.

Discussion
This study demonstrates the value of a comprehensive 
CMR-based quantification of native T1 in the diagno-
sis of DMD. Compared with global native T1 values, 
regional native T1 values provide a superior way to dis-
tinguish DMD patients from controls. To the best of our 
knowledge, this is the first study to investigate a method 
for quantitative evaluation of native T1 in specific lay-
ers of the myocardium. Our patients covered a wide 
age range. Interestingly, myocardial LGE-negative seg-
ments in DMD with cardiac involvement showed higher 
T1 values than those of either DMD without cardiac 
involvement or controls, indicating that a diffuse ongo-
ing process in the myocardium can be observed in this 
genetic disease. In addition, the study provides further 
evidence to support the contention that fibrotic substi-
tution in the myocardium of DMD patients usually has a 
heterogeneous distribution and predominantly proceeds 
from the epicardium to the endocardium [4, 21].

Despite advances in the diagnosis and management 
of DMD over the past 10 years, cardiomyopathy-related 
heart failure and arrhythmias are increasingly important 
sources of morbidity and mortality in DMD patients [22, 
23]. This underlines the impact of an early diagnosis, as 
shown by Yilmaz et  al. [24] using CMR. Nevertheless, 
due to young age and clinical presentation in the popula-
tion, the decision is often difficult. Only 30% of boys with 
DMD have cardiac symptoms at diagnosis (far fewer than 
in other dilated cardiomyopathies). However, DMD car-
diomyopathy carries higher mortality than other dilated 
cardiomyopathies [25]. Additional information about 
myocardial tissue changes could be helpful in guiding 
therapeutic decision making in certain circumstances. 
LGE imaging has served as the workhorse technique for 
tissue characterization; however, the inability to detect 
diffuse fibrosis with this technique makes it a restricted 
biomarker with regard to early detection and the efficacy 
of cardioprotective medications. Meanwhile, T1 mapping 
has been introduced and histologically validated to detect 
diffuse myocardial damage [26]. The present prospective 
analysis suggests that native T1 and extracellular volume 
(ECV) are robust indicators of myocardial disease asso-
ciated with DMD [15, 27]. However, ECV is limited by 
the need for contrast administration, which may be con-
sidered invasive and makes it challenging for pediatric 
patients to endure. This study provides further evidence 
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to support noncontrast examinations in pediatric DMD 
patients, particularly in conditions when the use of con-
trast might be contraindicated.

The native T1 values reported here are consistent with 
a recently published pediatric study by Maforo et  al. 

using 3 T imaging [15]. However, our study provides the 
first comprehensive assessment of global and regional 
native T1 from basal to middle slices and from the epi-
cardial layer to the endocardial layer. Our study found 
statistically significant differences in lateral but not septal 

Fig. 3  The violin plots of layer-specific native T1 values the DMD and healthy control groups at the basal (A) and mid-level (B) level
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native T1 between patients with and without focal fibro-
sis, a finding also demonstrated by Olivieri [14]. Soslow 
et al. [12] studied 31 DMD patients and found increased 
global native T1 relative to healthy  controls not only 

among DMD patients in general but also in LGE-nega-
tive patients. One other group has also reported elevated 
global native T1 in LGE− patients compared with healthy 
subjects [13]. In contrast, LGE− patients in our study 

Fig. 4  Example midventricular level short-axis native T1 maps (top) and corresponding late gadolinium enhancement (LGE) images (bottom). 
Example maps and images are shown for a DMD patient with cardiac involvement in the subepicardial layer of the free wall (left), for a DMD patient 
without cardiac involvement (middle), and for a healthy control (right)

Fig. 5  Receiver operating characteristic (ROC) curves for basal (A) and mid-level (B) T1-derived values for differentiating between healthy controls 
and DMD patients. Endo- endocardial layer, Epi- epicardial layer, Global global myocardium, AUC​ area under the curve
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did not have increased global native T1 compared with 
healthy controls. It seems possible that this discrepancy 
is due to differences in the patient samples, particularly 
age and disease stage. For example, the population of 
the present study was younger than that of the study by 
Soslow et al. [12] (mean age 13.4 years) and had a higher 
LVEF (60.1% vs. 54.8%).

In light of the current knowledge, averaging native 
T1 over the entire myocardium may not be sensi-
tive enough to detect regional abnormalities; accord-
ingly, we conducted a layer-specific analysis as well. The 
results of this study demonstrated significant differences 
in the epicardial layer between DMD subjects without 

cardiac involvement and controls. In addition, native 
T1 of the epicardial layer provides the greatest distinc-
tion between DMD patients and healthy  controls. We 
hypothesized that native T1 of the epicardial layer could 
provide a superior way to distinguish DMD patients from 
healthy  controls. Hence, although global values seem 
easier to manage, postprocessing that facilitates the use 
of segmental or layer-specific evaluations is required in 
the future.

In postmortem hearts, it has already been demon-
strated that myocardial damage starts in the subepi-
cardial layer of the free wall with possible transmural 
extension in contiguous segments. This fibrotic change 
starts generally at the region behind the posterior and 
mitral valve apparatus and spreads downward progres-
sively toward the apex [4, 24, 28]. The reasons why there 
was no significant difference between endocardial native 
T1 and epicardial native T1 at the middle level both in 
our LGE + and LGE− patients may be that fibrotic sub-
stitution in our LGE + patients only involved in basal 
slice in general and hasn’t progressed to the middle level 
due to their relatively young age. Since Silva et  al. [29] 
initially reported the presence of LGE in DMD, many 
groups have demonstrated that LGE can reveal extracel-
lular matrix (ECM) expansion consistent with fibrosis in 

Fig. 6  Even in the LGE- negative segments of DMD patients with cardiac involvement, the native T1 was significantly higher than those of patients 
without cardiac involvement and normal controls

Table 3  Intra- and interobserver reliability of the measurement 
of global native T1, epicardial native T1, and endocardial native 
T1, described with ICCs and 95% CIs

ICC intraclass correlation coefficient, CI confidence interval

Measurement ICC (95% CI)

Intraobserver Interobserver

Global native T1 0.996 (0.981–0.999) 0.991 (0.960–0.998)

Epicardial native T1 0.991 (0.973–0.997) 0.984 (0.946–0.995)

Endocardial native T1 0.968 (0.907–0.989) 0.981 (0.940–0.994)
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the same location [30, 31]. Our results obtained in the 
present study by the state-of-the-art noninvasive tech-
nique of parametric mapping confirm those previous 
results and support the current belief that myocardial 
damage starts from the epicardial layer of the myocar-
dium in DMD. Importantly, these changes are detectable 
even in DMD patients without apparent LGE and there-
fore provide an earlier indication of cardiac involvement.

Limitations
Our study has several limitations. First, apical segments 
were not considered due to the high exclusion rate (60% 
had artifacts and/or partial volume effects), which pre-
vents the AHA segmental analysis integrated. Addition-
ally, the DMD group had significantly faster heart rates, 
which may influence the generalizability of our T1 map-
ping results [32]. However, guidelines suggest that the 
effects of heart rate on T1 mapping are minimized with 
the sequence parameters used in this study [33, 34]. 
Finally, we didn’t calculate ECV. Instead, we focused on 
the value of native T1 mapping rather than ECV quanti-
fication with contrast material. Native T1 measurement 
may be a replaceable method of ECV or LGE for detect-
ing myocardial involvement, which is important in DMD 
patients because recent reports suggested that renal dis-
ease may be under-recognized in advanced-stage DMD 
patients [35].

Conclusions
In DMD patients, native T1 measurement by CMR is a 
useful tool in assessing myocardial fibrosis as well as 
detecting myocardial abnormalities even in the absence 
of LGE. Myocardial regional native T1, particularly epi-
cardial native T1, seems to have potential as a novel 
robust marker of very early cardiac involvement in DMD.
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