Skip to main content
  • Meeting abstract
  • Open access
  • Published:

1053 Assessment of complex peripheral vascular malformations with highly time-resolved 3D contrast-enhanced MR angiography and single phase high-spatial resolution 3D contrast-enhanced MRA at 3.0 Tesla


Over the past few years, contrast enhanced MR angiography (CE-MRA) techniques have emerged as non-invasive and safe alternative imaging approaches for comprehensive imaging of upper and lower extremity vascular malformations. Due to its high-spatial resolution, single-phase CE-MRA is desirable for evaluation of the anatomical extent and morphological details of these lesions. However, this technique is limited in providing functional and dynamic information of vascular malformations. Rapid dynamic viewing is necessary for appropriate visualization of arteries from veins in lesions with fast flow such as peripheral arteriovenous malformations (AVMs). Time resolved MRA provides dynamic information which are complementary to conventional MRA by showing the flow dynamics of these disorders, demonstrating feeding arteries or draining veins, and differentiating a slow from high flow lesion.


To investigate the utility of low dose TR-MRA in evaluation of complex vascular malformations of the extremities, and to compare the results with conventional contrast-enhanced MRA (CE-MRA)


15 consecutive patients (6 males, 9 females, age range 14–47) underwent time-resloved 3D contrast-enhanced MRA, and single phase high spatial resolution 3D MRA at 3.0 T(Trio, Siemens) for known or suspected upper and lower extremity vascular malformations. Two readers evaluated the overall image quality (4-point scale), artifacts, and findings on each dataset. Wilcoxon Rank Sum test, and kappa co-efficient were used for image quality and inter-observer variability assessment.


Both readers graded the median overall image quality as excellent for both datasets (good inter-observer agreement). Reader 1(2) graded 5(4) TR-MRA datasets as having mild motion artifacts. A total of 19 vascular malformations were confidently diagnosed by both readersn on each dataset including eleven lower extremity (4 AVMs, 8 venous hemangiomas, 1 venous dysplasia), and 6 upper extremity venous hemangiomas. Each reader demonstrated additional dynamic information on TR-MRA in all 15 patients (100%) including AVM/hemangioma hemodynamics (4, highh flow, 15 slow flow). TR-MRA was able to separate dominant feeding and draining vessels in all high flow AVMs compared to CE-MRA. Reader 1(2) detected arterial feeders and draining veins in 4(4) and 8(9) lesions, respectively, on TR-MRA, and in 8(7) and 14(14) lesions on CE-MRA datasets (excellent inter-observer agreement). Anatomical details including evaluation of the full extent of the malformations (19 lesions), muscle involvement (15 lesions), bone involvement (2 lesions), subcutaneous involvement (15 lesions), and filling defects within vessels (12 lesions) were better demonstrated on CE-MRA.


Time-resolved MR angiography provides unique dynamic and functional information combined with morphological features for assessment of complex peripheral vascular malformations. Due to limited spatial resolution, this technique should be considered as complementary or supplementary to high spatial resolution MRA.

Author information

Authors and Affiliations


Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Krishnam, M.S., Tomasian, A., Singhal, A. et al. 1053 Assessment of complex peripheral vascular malformations with highly time-resolved 3D contrast-enhanced MR angiography and single phase high-spatial resolution 3D contrast-enhanced MRA at 3.0 Tesla. J Cardiovasc Magn Reson 10 (Suppl 1), A178 (2008).

Download citation

  • Published:

  • DOI: