- Poster presentation
- Open Access
- Published:
Contribution of the base of the heart to MR measures of left ventricular mass, volumes and scar in patients with myocardial infarction
Journal of Cardiovascular Magnetic Resonance volume 11, Article number: P53 (2009)
Introduction
In planimetric measurement of left ventricular (LV) mass and volumes, selection of the most basal short-axis cine MR image plane is generally not standardized and may affect calculation of relative infarct size in post-myocardial infarct (MI) patients.
Purpose
To study the effect of LV base-plane selection on MR measures of LV mass, volumes, ejection fraction (EF) and relative infarct size in post-MI patients.
Methods
SSFP cardiac cine and multi-shot inversion recovery spoiled gradient echo delayed enhancement (DE) images were acquired in 14 patients with documented MI (3 F; mean age 59.6 ± 10.4 years), at 1.5 T. Cine and DE images were acquired in corresponding short-axis planes (voxel size ≤ 2.5 × 2.0 × 10.0 mm; slice gap ≤ 2 mm) from LV base (mitral valve plane) to apex. An expert observer used Argus software (Siemens Medical Solutions) to manually outline LV epi- and endomyocardial contours on cine images at end-diastole (ED) and end-systole (ES) using each of 3 methods for choosing the most basal LV slice: #1 base-plane showing 100% of myocardium at ED and corresponding ES plane, #2 base-plane selected separately for ED and ES, with 100% of myocardium visible at both phases, #3 base-plane showing 100% of myocardium at ES and corresponding ED plane. LV mass was averaged over ED and ES for each method. EF, and ED and ES-volumes were also calculated. Infarct borders were manually outlined on DE images. Infarct size (Infarct%) was expressed as a percentage of LV mass measured on the cines (in each method). Comparisons were made using repeated measures ANOVA, with Bonferroni-corrected post-hoc P-values.
Results
LV mass was largest in method #1 and smallest in #3 (138.5 ± 31.2 vs. 133.0 ± 29.3 vs. 124.8 ± 27.3 g, P < 0.01 for all comparisons). Method #2 produced a larger EF (51.3 ± 8.9%) vs. #1 (43.8 ± 9.4%) or #3 (43.9 ± 10.8%); P < 0.01. Infarct% was smallest in method #1 and differed significantly between all methods (9.7 ± 4.9 vs. 10.2 ± 5.3 vs. 10.9 ± 6.0%, P < 0.05). ED volume was lower in #3 than in #1 or #2 (P < 0.01) and ES volume was higher in #1 than in #2 or #3 (P < 0.01).
Conclusion
Selecting the base-plane based on the anatomy visible in only one phase, will lead to miscalculation of MRI measures of LV mass, volumes and relative infarct size, due to through-plane motion of the heart over the cycle. To standardize measurements and to ensure that the same tissue is being measured at both phases, the most basal slice should be selected independently for ED and ES based on the visible anatomy.
Author information
Authors and Affiliations
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Fonseca, C.G., Balawi, T., Sayre, J. et al. Contribution of the base of the heart to MR measures of left ventricular mass, volumes and scar in patients with myocardial infarction. J Cardiovasc Magn Reson 11 (Suppl 1), P53 (2009). https://doi.org/10.1186/1532-429X-11-S1-P53
Published:
DOI: https://doi.org/10.1186/1532-429X-11-S1-P53
Keywords
- Left Ventricular Mass
- Delay Enhancement
- Infarct Border
- Delay Enhancement Image
- Cardiac Cine