Skip to main content
Figure 2 | Journal of Cardiovascular Magnetic Resonance

Figure 2

From: Cardiovascular magnetic resonance physics for clinicians: part II

Figure 2

The three most commonly used magnetisation preparation pulses, showing their relation to the image data acquisition pulse sequence. Beneath each pulse sequence, curves show the behaviour of the z-magnetisation for three different tissues (fat, muscle and fluid). Spoiler gradients, S are applied to suppress any unwanted transverse magnetisation produced by the preparation pulses. In (a) following the 90° saturation pulse the z-magnetisation for all tissues is reduced to zero and recovers according to their T1 relaxation rate. When the imaging pulse sequence is applied after a delay TS the resultant contrast is T1-weighted with the shortest T1 (fat) yielding the highest signal intensity. In (b) following the 180° inversion pulse the z-magnetisation for all tissues is inverted, and then recovers from a negative value. When the imaging pulse sequence is applied after a delay TI, the tissue for which its z-magnetisation is passing through zero yields no signal, effectively suppressing the signal contribution from that tissue. In this example, the signal from muscle is suppressed. In (c) The frequency-selective fat suppression pulse is applied only at the resonant (Larmor) frequency of fat so that only the z-magnetisation of fat-based tissue is reduced. In this case the imaging pulse sequence is applied with no delay. The z-magnetisation of other tissues (muscle and fluid) are unaffected by the fat suppression pulse and will yield normal signal levels.

Back to article page