Skip to main content
Figure 33 | Journal of Cardiovascular Magnetic Resonance

Figure 33

From: Cardiovascular magnetic resonance physics for clinicians: part II

Figure 33

This diagram illustrates how velocity-related phase shifts are caused by blood flowing along the direction of two equal but opposite magnetic field gradients applied in succession, (bipolar gradient pulses). Two gradient pulses are shown with gradient amplitudes G and duration t, separated by a time T. Immediately after the rf pulse is applied, both moving and stationary spins have the same phase (top left). When the first positive gradient pulse is applied (1), spins at position A experience an increase in magnetic field due to their position along the gradient. When the second negative gradient pulse is applied[2], stationary spins that remain at position A experience an equal decrease in magnetic field, causing the spins to move back into phase with one another. Spins in moving blood with velocity v, however, will have moved to position B, and experience an additional decrease in magnetic field that is proportional to the distance moved, vT, from position A. The signal from moving blood therefore acquires a phase shift, Ï•, relative to that of stationary tissue, that is proportional to velocity, v as shown (top right). Bipolar gradient pulses are used to design velocity-sensitive pulse sequences. From the equation shown (top centre) it can be seen that the velocity-related phase shift, Ï•, is also proportional to amplitude G, the duration, t, and the separation, T, of the gradient pulses. Velocity sensitive pulse sequences are designed to be sensitive over different velocity ranges through careful choice of these gradient pulse parameters.

Back to article page