# Table 2 Summary of the multiple linear regression models, split by gender

Men Women
B β P B β p p for interaction
LV mass (g)
Lean Mass 1.91 0.53 <.0001 1.65 0.51 <.0001 .005
Fat Mass −0.03 −0.01 .82 0.26 0.11 <.0001 .02
LV EDV (ml)
Lean Mass 1.80 0.49 <.0001 1.56 0.43 <.0001 .11
Fat Mass −0.29 −0.07 .02 0.34 0.13 <.0001 <.0001
Concentricity (LV mass/volume)
Lean Mass 0.002 0.11 .03 0.004 0.19 <.0001 .65
Fat Mass 0.002 0.09 .03 −6×10−6 −0.0004 .99 .03
Stroke Volume (ml)
Lean Mass 1.01 0.44 <.0001 1.07 0.46 <.0001 .86
Fat Mass −0.1 −0.04 .23 0.28 0.17 <.0001 <.0001
Heart Rate (bpm)
Lean Mass −0.26 −0.20 .0003 −0.15 −0.10 .04 .48
Fat Mass 0.26 0.17 <.0001 0.09 0.08 .04 .04
Cardiac Output (L/min)
Lean Mass 0.03 0.18 .0002 0.06 0.29 <.0001 .19
Fat Mass 0.02 0.10 .006 0.03 0.20 <.0001 .09
1. Models are adjusted for age, race, systolic BP and height. Lean mass and fat mass are in kg
2. B gives the estimate of the beta-values in the regression equations, such that for each 1 kg increase in fat mass or lean mass the given predictor variable (e.g. LV mass) changes by B amount (if other variables in the model are held constant)
3. β gives standardised beta-values, such that for each 1 standard-deviation increase in lean mass or fat mass, the given predictor variable changes by β standard-deviations (if other variables in the model are held constant)
4. R 2 for LV mass models: men = 0.42, women = 0.43. R 2 for LV EDV models: men = 0.47, women = 0.45. R 2 for concentricity models: men = 0.10, women = 0.10. R 2 for stroke volume models: men = 0.42, women = 0.45. R 2 for heart rate models: men = 0.06, women = 0.02. R 2 for cardiac output models: men = 0.24, women = 0.29. BP indicates blood pressure, LV left ventricle and EDV end diastolic volume 