Skip to main content
  • Oral presentation
  • Open access
  • Published:

Assessment of myocardial perfusion reserve with blood oxygen level-dependent cardiovascular magnetic resonance imaging


New Blood Oxygen Level-Dependent Cardiovascular Magnetic Resonance Imaging (BOLD-CMR) sequences show a high sensitivity and consistent image quality that allows for assessing tissue oxygenation. We hypothesized that BOLD-CMR can quantitatively assess myocardial blood flow changes using myocardial oxygenation as a biomarker.


To test whether a BOLD-CMR sequence accurately estimates myocardial perfusion changes.


Six anesthetized mongrel dogs were instrumented with a coronary infusion catheter in the circumflex coronary artery (LCX), an MR-compatible epivascular flow probe around the LCX and a catheter in the coronary sinus. Using a clinical 1.5 T MRI system (MAGNETOM Avanto, Siemens Healthcare, Germany), SSFP BOLD-CMR was performed during graded intracoronary infusion of adenosine in the LCX. Typical scan parameters were: Field-of view (FOV) 190 × 280 mm; matrix size 106 × 192; slice thickness 10 mm; TR/TE 5.8/2.9 ms; flip angle 90°; typical breath-hold duration 14 s. Images were analyzed using clinically validated software (cmr42, Circle Cardiovascular Imaging Inc., Calgary, Canada) and the BOLD signal intensity (SI) for each was calculated. Correlations of coronary flow, oxygen saturation in the coronary sinus and myocardial BOLD-CMR signal intensity (BOLD-SI) changes were calculated by regression analysis. The same CMR imaging protocol was used in 11 healthy volunteers (6 male, 5 female) before, during and after intravenous adenosine infusion (140 micro-g/kg). Myocardial perfusion reserve in the human volunteers was calculated from flow measurement in the coronary sinus using velocity-encoded CMR.


In dogs, adenosine-induced blood flow changes in the LCX agreed very well with changes in coronary venous saturation (logarithmic scale, r2 = 0.94, p < 0.001). Furthermore, coronary venous saturation showed a strong yet linear correlation with BOLD-SI changes (r2 = 0.80, p < 0.001). Consequently, as shown in Figure 1, blood flow changes correlated very well with the BOLD-SI (r2 = 0.84, p < 0.001). The exponential correlation is described by the equation (y) = 98.3+25.4*(1-e-0.0017x) (x = flow, y = BOLD-SI). In the volunteers, adenosine infusion resulted in a significant myocardial perfusion increase (416 ± 69% of baseline, p < 0.001). BOLD SI increased significantly by 20.1 ± 9.5% (p < 0.001 as compared to baseline). The reproducibility of the BOLD-SI in the two baseline measurements before and after adenosine infusion was excellent (mean difference 0.1 ± 2.6%, p = 0.97).

Figure 1
figure 1

Blood flow changes and BOLD-SI in canine model under adenosis infusion.


State-of-the-art BOLD-sensitive MRI sequences detect changes of myocardial perfusion in an experimental animal model and in humans in vivo. This technique may allow for an accurate, non-invasive assessment of myocardial perfusion reserve in humans.

Author information

Authors and Affiliations


Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Flewitt, J.A., Vöhringer, M., Green, J. et al. Assessment of myocardial perfusion reserve with blood oxygen level-dependent cardiovascular magnetic resonance imaging. J Cardiovasc Magn Reson 11 (Suppl 1), O85 (2009).

Download citation

  • Published:

  • DOI: