- Poster presentation
- Open access
- Published:
Myocardial Perfusion Imaging artifacts: centric h-EPI and its sensitivity to frequency errors
Journal of Cardiovascular Magnetic Resonance volume 12, Article number: P219 (2010)
Introduction
Clinical myocardial perfusion often uses Echo-Planar-Imaging, in a multishot "hybrid" variety using centre-out phase-encode-order ("h-EPI") [S Ding, et al., MRM, 39:514, 1998] for robustness against susceptibility dephasing of signal within pixels, especially during first-pass of paramagnetic Contrast-Agent (CA). However, this sequence may be sensitive to frequency errors.
Purpose
We examined the artifacts, specifically whether they could cause subendocardial Dark Rim Artifacts (DRA) mimicking perfusion defects in patients.
Methods
Clinical h-EPI stress/rest perfusion studies were reviewed after phantom images drew our attention to the off-resonance sensitivity of the h-EPI technique. All work was done at 1.5 T (Avanto, Siemens); h-EPI (4 echoes); TR/TE 5.1/1.7 ms; pixel size 2.8 × 2.8 × 8 mm; flip angle 30 deg; bandwidth 1860 Hz/pixel; saturation-recovery (TI = 90 ms); TSENSE with R = 2; Gd-based CA 0.1 mmol/kg at 3.5 ml/s. The sequence was also used to image across a hollow diamagnetic gelatine cylinder containing 12.5 mmol/L Gd-DTPA solution, forming a magnetostatic and relaxation-time model of the LV during CA first-pass. Phantom images were acquired at two scanner reference frequencies, approximating the gelatine "myocardium" and LV "blood" frequencies. For comparison, the phantom was also imaged with a balanced-SSFP perfusion sequence. For one in-vivo perfusion study, accumulated phase-errors corresponding to scanner reference frequency offsets were applied to the stored raw-data and images were repeat-reconstructed to examine h-EPI's sensitivity to the frequency used for the patient.
Results
When the reference frequency was set to myocardium (Figure 1 left), the LV blood "split" into two superimposed copies 5 mm above and below its true location (red-arrows) along the phase-encode direction. Conversely using the blood frequency (Figure 1 centre), the LV blood was imaged sharply, whereas the off-resonance myocardium split (green-arrows); explained by the opposite phase-encode directions of data collection of centre-out h-EPI. Part of the myocardial splitting deepened the Gibbs DRA (yellow-arrows). BSSFP is also shown (Figure 1 right).
Clinical examples of this effect occurred (extreme example Figure 2; less prominent Figure 3 left), probably dependent on scanner reference frequency and shimming. Because this could not be proved during clinical scanning, the effective scanner reference frequency was changed by raw-data reprocessing (Figure 3 right): increased lateral wall sharpness, but degraded the septum, implying a frequency slope across the heart in this patient.
Conclusion
In clinical use, the h-EPI centre-out phase-encode order is sufficiently sensitive to frequency offsets that phase-encode "splitting" of the endocardial border may degrade image clarity and even generate subendocardial DRAs along the phase encode direction.
Author information
Authors and Affiliations
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Ferreira, P., Gatehouse, P. & Firmin, D. Myocardial Perfusion Imaging artifacts: centric h-EPI and its sensitivity to frequency errors. J Cardiovasc Magn Reson 12 (Suppl 1), P219 (2010). https://doi.org/10.1186/1532-429X-12-S1-P219
Published:
DOI: https://doi.org/10.1186/1532-429X-12-S1-P219