- Poster presentation
- Open Access
- Published:
High resolution delayed enhancement imaging using a spiral k-space trajectory for the detection of chronic radiofrequency ablation lesions in the left atrium
Journal of Cardiovascular Magnetic Resonance volume 12, Article number: P66 (2010)
Introduction
Delayed-enhancement (DE) in the left atrium following radiofrequency (RF) ablation has been previously shown [1]. However, current DE techniques do not reach sufficient resolution to determine if ablation lesions are transmural, a factor that can determine the success of an ablation procedure. Myocardial thickness in the left atrium can reach approximately 1 mm [2]. Therefore a delayed enhancement imaging sequence must be sub-millimetre in resolution. For this requirement, we develop a high resolution inversion recovery (IR) sequence with a spiral k-space trajectory. A spiral trajectory is a very efficient sampling scheme that allows for a very short acquisition window (minimising cardiac blurring) at a much reduced cost to overall imaging time compared to Cartesian.
Purpose
We demonstrate this high resolution technique by detecting chronic RF ablation scar in patients.
Methods
Two patients with chronic ablation scar underwent an MR examination on a 1.5 T Philips Achieva system with a 5-channel coil. After 25 mins following administration of 0.4 ml/kg of a Gd-DTPA contrast agent, a 3D IR-TFE scan with a Cartesian k-space trajectory was performed [1]. Following this scan, a M2D IR-TFE scan with a spiral k-space trajectory was performed (slices = 3, thickness = 5 mm, resolution = 0.7 mm2, FOV = 270 mm2, 1 spiral per 2RR intervals, acquisition = 20 ms per spiral, 45 spirals per slice). ECG triggering was set to atrial systole. Respiratory navigation was used. Corresponding B0 maps were acquired to correct strong B0 field inhomogeneities produced in spiral acquisitions.
Images were reconstructed offline and a conjugate phase reconstruction based on a Chebyshev approximation [3] was employed to correct B0 field inhomogeneities. Images were observed by a cardiologist with expertise in MRI to assess for areas where lesions were not transmural.
Results
In both patients, the IR-spiral scan captured the LSPV and the RSPV (Fig 1). Enhancement can be seen in both patients on the posterior wall adjacent to the LSPV, and Patient 2 shows enhancement on the anterior wall adjacent to the RSPV. In patient 1, the areas of enhancement are confirmed by the Cartesian scan, although the spiral also shows enhancement in the mitral valve.
Discussions and Conclusion
This study has shown the feasibility of sub-millimetre delayed enhancement imaging of the left atrium. Current work consists of developing a technique to determine transmurality of the ablation lesions, and acquiring further patient data.
References
Peters et al: Radiology. 2007, 243: 690-5. 10.1148/radiol.2433060417.
Ho et al: J Cardiovasc Electrophysiol. 1999, 10: 1525-33. 10.1111/j.1540-8167.1999.tb00211.x.
Chen et al: MRM. 2008, 60: 1104-111.
Author information
Authors and Affiliations
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Knowles, B.R., Caulfield, D., Razavi, R. et al. High resolution delayed enhancement imaging using a spiral k-space trajectory for the detection of chronic radiofrequency ablation lesions in the left atrium. J Cardiovasc Magn Reson 12 (Suppl 1), P66 (2010). https://doi.org/10.1186/1532-429X-12-S1-P66
Published:
DOI: https://doi.org/10.1186/1532-429X-12-S1-P66
Keywords
- Left Atrium
- Conjugate Phase
- Ablation Lesion
- Delay Enhancement Imaging
- High Resolution Technique