Skip to main content

Relation of microvascular dysfunction to exercise capacity and symptoms in patients with severe aortic stenosis


The aim of this study was to assess the impact of left ventricular hypertrophy, myocardial fibrosis, myocardial perfusion reserve (MPR) and diastolic dysfunction on objectively measured aerobic exercise capacity (peak VO2) in severe aortic stenosis (AS).


The management of asymptomatic patients with severe AS remains controversial and clinical practice varies. Echocardiographic measures of severity do not discriminate between symptomatic status or predict exercise capacity. The purpose of this study was to investigate the mechanisms contributing to symptom generation and exercise intolerance. This needs to be fully understood to optimise the management of asymptomatic AS.


Patients were prospectively enrolled from a single cardiac surgical centre. Inclusion criteria: age 18-85, isolated severe AS referred for valve replacement. Exclusion criteria: syncope; other moderate/severe valve disease, previous valve surgery, obstructive coronary artery disease (>50% luminal stenosis on invasive angiography), chronic obstructive pulmonary disease, atrial fibrillation, estimated glomerular filtration rate <30mL/min. Investigations and primary outcome measures; cardiac magnetic resonance (CMR) - left ventricular mass index (LVMI), MPR (calculated from absolute myocardial blood flow during adenosine hyperaemia and rest determined by model-independent deconvolution of signal intensity curves with an arterial input function), late gadolinium enhancement (LGE); echocardiography - AS severity, tissue Doppler-derived diastolic function; symptom-limited bicycle ergometer cardiopulmonary exercise testing (CPEX) - peak VO2. Linear regression investigated possible predictors of continuous outcome measures. Stepwise selection methods were used to determine the most important predictors of outcome.


Four patients with variable LVMI, LGE and MPR are shown, Figure 1. Univariate analyses and results from the stepwise model selection for peak VO2 are summarised in Table 1. Only MPR was of independent significance in predicting age and sex corrected peak VO2. The relationship between peak VO2 and MPR is shown, Figure 2. Patients with higher NYHA Class had lower MPR (p=0.001). Examining predictors of MPR the best stepwise model contained LVMI and LGE category as independent predictors, Table 2.

Figure 1
figure 1

Patients (A-D). i) Short-axis cine end-diastole; ii) LGE - white arrows; Perfusion imaging mid-LV slice iii) hyperaemia, iv) rest.

Table 1 Predictors of Peak VO2
Figure 2
figure 2

Peak VO2 and MPR

Table 2 Predictors of Perfusion Reserve


MPR is a novel independent predictor of peak VO2 and is inversely related to NYHA functional class in severe AS. Microvascular dysfunction is determined by a combination of factors including AS severity, LVMI, diastolic perfusion time, myocardial fibrosis and LV filling pressure. Further work is required to determine the clinical significance of microvascular dysfunction in AS.

Author information

Authors and Affiliations


Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Steadman, C.D., Jerosch-Herold, M., Grundy, B. et al. Relation of microvascular dysfunction to exercise capacity and symptoms in patients with severe aortic stenosis. J Cardiovasc Magn Reson 13 (Suppl 1), O5 (2011).

Download citation

  • Published:

  • DOI: