- Oral presentation
- Open access
- Published:
Eliminating dark-rim artifacts in first-pass myocardial perfusion imaging
Journal of Cardiovascular Magnetic Resonance volume 15, Article number: O3 (2013)
Background
We demonstrate that projection imaging significantly reduces the prevalence and spatial extent of subendocardial dark-rim artifacts (DRAs) in first-pass perfusion (FPP) myocardial MR, compared to conventional Cartesian techniques. A major cause of DRAs, which remain a major concern in FPP imaging, is known to be the so-called Gibbs ringing (truncation) phenomenon [1–3]. Radial k-space sampling exhibits minimal Gibbs effects with typical FPP parameters, thereby eliminating a major contributing factor to DRAs [4]. The underlying theory is demonstrated in Fig. 1, which describes Cartesian and radial k-space sampling (with the same number of readouts) and the corresponding point spread functions (PSFs). Insufficient coverage along phase-encode direction with Cartesian sampling results in significant ringing in image domain (Fig. 1b). In contrast, angular undersampling results in streaks outside of a "local" region for radial images (Fig. 1c). Panels 1d-f show phantom studies (Gelatin-based with realistic contrast ratios, resembling the LV with a deficit region) verifying the described PSF effects.
Methods
Healthy human volunteers (N=12) were imaged on a 3T scanner (Siemens Verio). Two FPP scans (SR-prepared FLASH) were performed at rest (>10 minutes gap) using a single-shot radial pulse sequence followed by a single-shot Cartesian sequence (common parameters: FOV read =270-350 mm; BW ≈800 Hz/pixel; flip angle = 12°; TR =2.4-2.6 ms; TI =100 ms). Both scans were accelerated using rate 2 parallel imaging (TGRAPPA for Cartesian and SENSE for radial) and the number of readouts per frame was matched within 10% (range: 48-56). Scans were visually read for artifact by 2 expert readers blinded to the study protocol using a consensus 0-4 scoring scheme (0:no DRA; 4:severe DRA).
Results
Representative images from 4 of the 12 studied subjects are shown in Fig. 2, where the top panels show Cartesian images (arrows point to DRAs) and bottom ones are the corresponding radial images. All images correspond to a pre-defined early myocardial enhancement phase (see caption). Qualitative analysis (Fig. 2e) clearly shows the superiority of radial imaging in reducing the DRA. Similar findings were evident from quantitative assessment of the DRA maximal width (Fig. 2f).
Conclusions
In this work, we demonstrated that radial imaging is capable of significantly reducing the dark rim artifact even in the early myocardial enhancement phase of a first-pass perfusion image series, due to its inherent robustness to Gibbs ringing. Such artifacts may confound interpretation and diagnosis of subendocardial perfusion defects (which may "fill in" early during the myocardial enhancement phase). Advanced (e.g., model-based/iterative) reconstruction techniques with radial acquisition can be used to improve image quality while preserving the described dark-rim-minimizing properties.
Funding
Grant sponsors: American Heart Association Postdoctoral Fellowship Award 11POST7390063; National Institutes of Health grants nos. NHLBI HL38698, HL091989, N01-HV-68161, N01-HV-68162, N01-HV-68163, N01-HV-68164, U01 HL649141, and NIH CTSI UL1TR000124.
References
Gerber : . JCMR. 2008, 10: 18
DiBella : . MRM. 2005, 54: 1295
Ferreira : . JCMR. 2009, 11: 17
Sharif : . ISMRM. 2012, 1144
Author information
Authors and Affiliations
Rights and permissions
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Sharif, B., Dharmakumar, R., LaBounty, T. et al. Eliminating dark-rim artifacts in first-pass myocardial perfusion imaging. J Cardiovasc Magn Reson 15 (Suppl 1), O3 (2013). https://doi.org/10.1186/1532-429X-15-S1-O3
Published:
DOI: https://doi.org/10.1186/1532-429X-15-S1-O3