- Poster presentation
- Open Access
- Published:
In vivo cardiac diffusion tensor imaging in free-breathing conditions
Journal of Cardiovascular Magnetic Resonance volume 15, Article number: P231 (2013)
Background
The fiber structure of the human heart contributes significantly to efficient ventricular function in the presence of disease. DTI provides a non-invasive approach for the three-dimensional depiction of the myocardial fiber architecture. The biggest problem for in vivo cardiac DTI is the signal loss caused by motion. Recently, to cope with human physiological motion problem, a robust method called PCATMIP was proposed (Rapacchi, Invest radiol 2011) that uses principal component analysis (PCA) filtering to improve the signal-to-noise ratio (SNR) and temporal maximum intensity projection (TMIP) approach to compensate the signal loss. While performing cardiac DTI during subject's breath-hold may be not realistic to apply in clinical routine, achieving acquisitions during subject free-breathing represents an ultimate objective. In this study, our objective was to obtain in vivo DTI parameters of the human heart with free-breathing.
Methods
To cope with intensity fluctuations arising due to motion, our strategy was to acquire multiple diffusion weighted (DW) images at different time points during the diastole in each consecutive cardiac cycle; after each time frame was acquired, the trigger delay was increased by 10ms. At each trigger delay, we obtained 12 direction DW images and b=0. We acquired 10 DT-MRI slices across the whole heart. The total scan time is about 20 minutes at an average heart rate of 60bpm. The MRI parameters are: TE/TR=51/100ms, spatial resolution=2.6x2.6x6mm3, acceleration rate=2 (GRAPPA), partial Fourier=6/8, base resolution matrix=90x160, and b=200s/mm2. Free-breathing DWI scans were then registered using a non-rigid registration algorithm that preserves high accuracy and consistency of the data. Finally, PCATMIP algorithm was applied to the registered images to obtain motion-reduced ones.
Results
Lost signal was recovered and the intensity of the DW images was substantially enhanced (Fig. 1). After processing by PCATMIP, both FA (0.43±0.05) and MD (0.75±0.12×10-3 mm2/s) are smaller than those obtained from 1TD acquisition (0.56±0.05 and 1.37±0.16×10-3 mm2/s, respectively) measured over the LV. Coherent helix angle (HA) variations across the ventricle's wall were observed (Fig. 2). The myocardial fiber orientation of the LV showed a circularly symmetric pattern, which reflects the rotation characteristic of cardiac fibers.
Conclusions
This study demonstrates the feasibility of in vivo cardiac DTI in healthy volunteers. The PCATMIP can be used to minimize the motion-induced signal loss. The proposed acquisition and processing scheme allow to obtain the in vivo DTI parameters while the subject was freely breathing, which opens interesting perspectives for in vivo cardiac DTI clinical applications.
Funding
This work was supported by the French ANR 2009 (under ANR-09-BLAN-0372-01).
Author information
Authors and Affiliations
Rights and permissions
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Wei, H., Viallon, M., Delattre, B.M. et al. In vivo cardiac diffusion tensor imaging in free-breathing conditions. J Cardiovasc Magn Reson 15 (Suppl 1), P231 (2013). https://doi.org/10.1186/1532-429X-15-S1-P231
Published:
DOI: https://doi.org/10.1186/1532-429X-15-S1-P231
Keywords
- Diffusion Tensor Imaging
- Diffusion Weighted Image
- Myocardial Fiber
- Trigger Delay
- Cardiac Diffusion