- Workshop presentation
- Open access
- Published:
Feasibility and benefit of using a cryogenic radiofrequency coil for functional cardiac magnetic resonance imaging of mice at 9.4 T
Journal of Cardiovascular Magnetic Resonance volume 15, Article number: W39 (2013)
Background
Cardiac morphology and function assessment by MRI is of increasing interest for a variety of mouse models in pre-clinical research. Signal-to-noise ratio (SNR) constraints, however, limit image quality and blood myocardium delineation, which crucially depend on high spatial resolution. Significant gains in SNR can be achieved with a cryogenically cooled RF probe. This study examines the feasibility and potential benefits of CMR in mice employing a 400 MHz cryogenic RF surface coil, compared with a conventional mouse heart coil array operating at room temperature.
Methods
Imaging was conducted using a 9.4T MR system (Bruker Biospin, Ettlingen, Germany). Two RF coil set-ups were used: a) a conventional linear polarized birdcage resonator (Bruker Biospin; inner diameter 72mm) for transmission in conjunction with a curved four channel receive only mouse cardiac coil array (Bruker Biospin) at room temperature (RT) and b) a cryogenic transceive quadrature RF surface coil (CryoProbe, CP, Bruker Biospin) of similar coil geometry as the RT surface coil (inner diameter 20mm) operating at 30 K (preamplifiers at 77 K). Ten C57BL/6N mice were imaged twice, once with the RT-coil and once with the CryoProbe. Short axis views were acquired for ten slices covering the whole heart using a self-gated bright-blood cine technique (IntraGate-FLASH, slice thickness=0.8 mm). For each coil two imaging protocols with TE/TR=1.3/8.5 ms and 20 frames were conducted: a) conventional spatial resolution (156x234x800 µm3, α=15°, NR=100, TA ~2 min) and b) high spatial resolution (69x115x800 µm3, α=20°, NR=170, TA ~4.5 min). The latter was used for cardiac function assessment. Intraobserver variability for the EDV, ESV and EDM of the left and right ventricle was evaluated using Bland-Altman analysis.
Results
The cryogenic RF coil afforded SNR gains of 3.0 to 5.0 (highest SNR gains were observed for the region located closest to the coil) compared to a conventional room temperature cardiac RF coil set-up. The increased SNR enabled an enhanced spatial resolution (Fig.1). This markedly improved delineation of myocardial borders and facilitated a more accurate cardiac chamber quantification, due to reduced intraobserver variability. Standard deviations of the mean differences for EDV, ESV and masses were smaller using the CP for both LV and RV (Fig.2).
Conclusions
Cardiac morphology, cardiac chamber quantification and cardiac function assessment using a cryogenically cooled RF probe is feasible and affords significant SNR gains over the conventional approach. Hence, the use of a cryogenically cooled RF probe represents a valuable means of enhancing the capabilities of CMR of mice.
Author information
Authors and Affiliations
Rights and permissions
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Dieringer, B., Pohlmann, A., Dieringer, M. et al. Feasibility and benefit of using a cryogenic radiofrequency coil for functional cardiac magnetic resonance imaging of mice at 9.4 T. J Cardiovasc Magn Reson 15 (Suppl 1), W39 (2013). https://doi.org/10.1186/1532-429X-15-S1-W39
Published:
DOI: https://doi.org/10.1186/1532-429X-15-S1-W39